Mathematical Practice	6	7	8
1. Make sense of problems	In grade 6, students solve	In grade 7, students solve problems	In grade 8, students solve real world
and persevere in solving them.	problems involving ratios and	involving ratios and rates and discuss how	problems through the application of
	rates and discuss how they	they solved them. Students solve real world	algebraic and geometric concepts.
	solved them. Students solve real	problems through the application of	Students seek the meaning of a problem
	world problems through the	algebraic and geometric concepts. Students	and look for efficient ways to represent
	application of algebraic and	seek the meaning of a problem and look for	and solve it. They may check their
	geometric concepts. Students	efficient ways to represent and solve it. They	thinking by asking themselves, "What is
	seek the meaning of a problem	may check their thinking by asking	the most efficient way to solve the
	and look for efficient ways to	themselves, "What is the most efficient way	problem?", "Does this make sense?",
	represent and solve it. They may	to solve the problem?", "Does this make	and "Can I solve the problem in a
	check their thinking by asking	sense?", and "Can I solve the problem in a	different way?"
	themselves, "What is the most	different way?"	
	efficient way to solve the		
	problem?", "Does this make		
	sense?", and "Can I solve the		
	problem in a different way?"		
2. Reason abstractly and	In grade 6, students represent a	In grade 7, students represent a wide variety	In grade 8, students represent a wide
quantitatively.	wide variety of real world	of real world contexts through the use of	variety of real world contexts through
	contexts through the use of real	real numbers and variables in mathematical	the use of real numbers and variables in
	numbers and variables in	expressions, equations, and inequalities.	mathematical expressions, equations,
	mathematical expressions,	Students contextualize to understand the	and inequalities. They examine patterns
	equations, and inequalities.	meaning of the number or variable as	in data and assess the degree of linearity
	Students contextualize to	related to the problem and decontextualize	of functions. Students contextualize to
	understand the meaning of the	to manipulate symbolic representations by	understand the meaning of the number
	number or variable as related to	applying properties of operations.	or variable as related to the problem
	the problem and decontextualize		and decontextualize to manipulate
	to manipulate symbolic		symbolic representations by applying
	representations by applying		properties of operations.
	properties of operations.		

Mathematical Practices	6	7	8
3. Construct viable	In grade 6, students construct arguments	In grade 7, students construct arguments	In grade 8, students construct arguments
arguments and critique	using verbal or written explanations	using verbal or written explanations	using verbal or written explanations
the reasoning of others.	accompanied by expressions, equations,	accompanied by expressions, equations,	accompanied by expressions, equations,
	inequalities, models, and graphs, tables,	inequalities, models, and graphs, tables,	inequalities, models, and graphs, tables,
	and other data displays (i.e. box plots, dot	and other data displays (i.e. box plots, dot	and other data displays (i.e. box plots,
	plots, histograms, etc.). They further	plots, histograms, etc.). They further	dot plots, histograms, etc.). They further
	refine their mathematical communication	refine their mathematical communication	refine their mathematical communication
	skills through mathematical discussions in	skills through mathematical discussions in	skills through mathematical discussions in
	which they critically evaluate their own	which they critically evaluate their own	which they critically evaluate their own
	thinking and the thinking of other	thinking and the thinking of other	thinking and the thinking of other
	students. They pose questions like "How	students. They pose questions like "How	students. They pose questions like "How
	did you get that?", "Why is that true?"	did you get that?", "Why is that true?"	did you get that?", "Why is that true?"
	"Does that always work?" They explain	"Does that always work?". They explain	"Does that always work?" They explain
	their thinking to others and respond to	their thinking to others and respond to	their thinking to others and respond to
	others' thinking.	others' thinking.	others' thinking.
4. Model with	In grade 6, students model problem situations	In grade 7, students model problem situations	In grade 8, students model problem
mathematics.	symbolically, graphically, tabularly, and	symbolically, graphically, tabularly, and	situations symbolically, graphically, tabularly,
	contextually. Students form expressions,	contextually. Students form expressions,	and contextually. Students form expressions,
	equations, or inequalities from real world	equations, or inequalities from real world	equations, or inequalities from real world
	contexts and connect symbolic and graphical	contexts and connect symbolic and graphical	contexts and connect symbolic and graphical
	representations. Students begin to explore	representations. Students explore covariance	representations. Students solve systems of
	covariance and represent two quantities	and represent two quantities simultaneously.	linear equations and compare properties of
	simultaneously. Students use number lines to	They use measures of center and variability	functions provided in different forms.
	compare numbers and represent inequalities.	and data displays (i.e. box plots and	Students use scatterplots to represent data
	They use measures of center and variability	histograms) to draw inferences, make	and describe associations between variables.
	and data displays (i.e. box plots and	comparisons and formulate predictions.	Students need many opportunities to connect
	histograms) to draw inferences about and	Students use experiments or simulations to	and explain the connections between the
	make comparisons between data sets.	generate data sets and create probability	different representations. They should be
	Students need many opportunities to connect	models. Students need many opportunities to	able to use all of these representations as
	and explain the connections between the	connect and explain the connections between	appropriate to a problem context.
	different representations. They should be able	the different representations. They should be	
	to use all of these representations as	able to use all of these representations as	
	appropriate to a problem context.	appropriate to a problem context.	

Mathematical Practices	6	7	8
5. Use appropriate tools	Students consider available tools	Students consider available tools	Students consider available tools
strategically.	(including estimation and technology)	(including estimation and technology)	(including estimation and technology)
	when solving a mathematical problem and	when solving a mathematical problem and	when solving a mathematical problem
	decide when certain tools might be	decide when certain tools might be	and decide when certain tools might be
	helpful. For instance, students in grade 6	helpful. For instance, students in grade 7	helpful. For instance, students in grade 8
	may decide to represent similar data sets	may decide to represent similar data sets	may translate a set of data given in
	using dot plots with the same scale to	using dot plots with the same scale to	tabular form to a graphical
	visually compare the center and variability	visually compare the center and variability	representation to compare it to another
	of the data. Additionally, students might	of the data. Students might use physical	data set. Students might draw pictures,
	use physical objects or applets to	objects or applets to generate probability	use applets, or write equations to show
	construct nets and calculate the surface	data and use graphing calculators or	the relationships between the angles
	area of three dimensional figures.	spreadsheets to manage and represent	created by a transversal.
		data in different forms.	
6. Attend to precision.	In grade 6, students continue to refine	In grade 7, students continue to refine	In grade 8, students continue to refine
	their mathematical communication skills	their mathematical communication skills	their mathematical communication skills
	by using clear and precise language in	by using clear and precise language in	by using clear and precise language in
	their discussions with others and in their	their discussions with others and in their	their discussions with others and in their
	own reasoning. Students use appropriate	own reasoning. Students define variables,	own reasoning. Students use appropriate
	terminology when referring to rates,	specify units of measure, and label axes	terminology when referring to the
	ratios, geometric figures, data displays,	accurately. Students use appropriate	number system, functions, geometric
	and components of expressions, equations	terminology when referring to rates,	figures, and data displays.
	or inequalities.	ratios, probability models, geometric	
		figures, data displays, and components of	
		expressions, equations or inequalities.	

Mathematical Practices	6	7	8
7. Look for and make use of structure.	Students routinely seek patterns or structures to model and solve problems. For instance, students recognize patterns that exist in ratio tables recognizing both the additive and multiplicative properties. Students apply properties to generate equivalent expressions (i.e. $6 + 2x = 3 (2 + x)$ by distributive property) and solve equations (i.e. $2c + 3 = 15$, $2c = 12$ by subtraction property of equality), $c=6$ by division property of equality). Students compose and decompose two- and three-dimensional figures to solve real world problems involving area and volume.	Students routinely seek patterns or structures to model and solve problems. For instance, students recognize patterns that exist in ratio tables making connections between the constant of proportionality in a table with the slope of a graph. Students apply properties to generate equivalent expressions (i.e. 6 + 2x = 3 (2 + x) by distributive property) and solve equations (i.e. 2c + 3 = 15, 2c = 12 by subtraction property of equality), c=6 by division property of equality). Students compose and decompose two- and three-dimensional figures to solve real world problems involving scale drawings, surface area, and volume. Students examine tree diagrams or systematic lists to determine the sample space for compound events and verify that they have listed all possibilities.	Students routinely seek patterns or structures to model and solve problems. In grade 8, students apply properties to generate equivalent expressions and solve equations. Students examine patterns in tables and graphs to generate equations and describe relationships. Additionally, students experimentally verify the effects of transformations and describe them in terms of congruence and similarity.
8. Look for and express regularity in repeated reasoning.	In grade 6, students use repeated reasoning to understand algorithms and make generalizations about patterns. During multiple opportunities to solve and model problems, they may notice that $a/b \div c/d = ad/bc$ and construct other examples and models that confirm their generalization. Students connect place value and their prior work with operations to understand algorithms to fluently divide multi-digit numbers and perform all operations with multi-digit decimals. Students informally begin to make connections between covariance, rates, and representations showing the relationships between quantities.	In grade 7, students use repeated reasoning to understand algorithms and make generalizations about patterns. During multiple opportunities to solve and model problems, they may notice that a/b ÷ c/d = ad/bc and construct other examples and models that confirm their generalization. They extend their thinking to include complex fractions and rational numbers. Students formally begin to make connections between covariance, rates, and representations showing the relationships between quantities. They create, explain, evaluate, and modify probability models to describe simple and compound events.	In grade 8, students use repeated reasoning to understand algorithms and make generalizations about patterns. Students use iterative processes to determine more precise rational approximations for irrational numbers. During multiple opportunities to solve and model problems, they notice that the slope of a line and rate of change are the same value. Students flexibly make connections between covariance, rates, and representations showing the relationships between quantities.