Algebra I Learning Acceleration Guidance

Learning acceleration will ensure students have the skills they need to equitably access and practice on-grade level content. This chart is a reference guide for teachers to help them more quickly identify the specific prerequisite and co-requisite standards necessary for every Algebra I standard. Students should spend the large majority of their time on the major work of the grade (\square). Supporting work (\square) and, where appropriate, additional work (\square) can engage students in the major work of the grade.

Algebra I Standard	Previous Grade(s) Standards	Algebra I Standards Taught in Advance	Algebra I Standards Taught Concurrently
A1: N-RN.B. 3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually. Convert a decimal expansion which repeats eventually into a rational number by analyzing repeating patterns.		

A1: N-Q.A. 1
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

A1: N-Q.A. 2

Define appropriate quantities for the purpose of descriptive modeling.

A1: N-Q.A. 3

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
6.RP.A. 3
Use ratio and rate reasoning to solve real-
world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what unit rate were lawns being mowed?
c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent.
d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

		A1: N-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
8.EE.A.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.		

A1: N-Q.A. 2

Define appropriate quantities for the purpose of descriptive modeling.

A1: A-SSE.A. 1
 Interpret expressions that represent a

 quantity in terms of its context.a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.
6.EE.A. 2

Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y.
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.

7.EE.A. 2

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=$ 1.05 a means that "increase by 5% " is the same as "multiply by 1.05."

A1: A-SSE.A. 2

Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, or see $2 x^{2}+8 x$ as $(2 x)(x)+2 x(4)$, thus recognizing it as a polynomial whose terms are products of monomials and the polynomial can be factored as $2 x(x+4)$.

A1: A-SSE.B. 3

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
c. Use the properties of exponents to transform expressions for exponential functions emphasizing integer exponents. For example, the growth of bacteria can be modeled by either $f(t)=$ $3^{(t+2)}$ or $g(t)=9\left(3^{t}\right)$ because the expression $3^{(t+2)}$ can be rewritten as $\left(3^{t}\right)\left(3^{2}\right)=9\left(3^{t}\right)$.
6.EE.A. 3 Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+$ 18y to produce the equivalent expression 6 ($4 x$ $+3 y$); apply properties of operations to $y+y+$ y to produce the equivalent expression $3 y$.

7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).

6.EE.A. 3

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+$ $18 y$ to produce the equivalent expression 6 ($4 x$ $+3 y$); apply properties of operations to $y+y+$ y to produce the equivalent expression $3 y$. 7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).

8.EE.A. 1

Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=$ $1 / 3^{3}=1 / 27$.

A1: A-SSE.A. 1

Interpret expressions that represent a quantity in terms of its context.
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.

A1: A-SSE.A. 1

Interpret expressions that represent a quantity in terms of its context.
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.

A1: A-SSE.A. 2

Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, or see $2 x^{2}+8 x$ as $(2 x)(x)+2 x(4)$, thus recognizing it as a polynomial whose terms are products of monomials and the polynomial can be factored as $2 x(x+4)$.

A1: A-REI.B. 4

Solve quadratic equations in one variable.
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as "no real solution."

A1: A-APR.A. 1
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+$ 18y to produce the equivalent expression 6 ($4 x$ $+3 y$); apply properties of operations to $y+y+$ y to produce the equivalent expression $3 y$.

6.EE.A. 4

Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for 7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).

8.EE.A. 1

Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=$ $1 / 3^{3}=1 / 27$.

A1: A-APR.B. 3
Identify zeros of quadratic functions, and use the zeros to sketch a graph of the function defined by the polynomial.
7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).

A1: A-SSE.A. 2
Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, or see $2 x^{2}+8 x$ as $(2 x)(x)+2 x(4)$, thus recognizing it as a polynomial whose terms are products of monomials and the polynomial can be factored as $2 x(x+4)$.

A1: A-SSE.B. 3

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
c. Use the properties of exponents to transform expressions for exponential functions emphasizing integer exponents. For example, the growth of bacteria can be modeled by either $f(t)=$ $3^{(t+2)}$ or $g(t)=9\left(3^{t}\right)$ because the expression $3^{(t+2)}$ can be rewritten as $\left(3^{t}\right)\left(3^{2}\right)=9\left(3^{t}\right)$.

A1: A-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions.
7.EE.B. 4

Use variables to represent quantities in a realworld or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?
b. Solve word problems leading to inequalities of the form $p x+q>r, p x+q$ $\geq r, p x+q<r$ or $p x+q \leq r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

8.EE.C. 7

Solve linear equations in one variable.
a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the
form $x=a, a=a$, or $a=b$ results
(where a and b are different numbers).
b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

A1: A-REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

A1: A-REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A1: A-CED.A. 2
 Create equations in two or more variables to

 represent relationships between quantities; graph equations on coordinate axes with labels and scales.8.EE.C. 8
Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
c. Solve real-world and mathematica problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

8.F.A. 3

Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

8.F.B. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions. two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

A1: A-CED.A. 3
Represent constraints by equations or
inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

A1: A-CED.A. 4

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.

A1: A-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions. A1: A-CED.A. 2
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A1: A-REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line)

A1: A-CED.A. 2

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A1: A-REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method

A1: A-REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A1: A-REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
7.EE.B. 4

Use variables to represent quantities in a realworld or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?
b. Solve word problems leading to inequalities of the form $p x+q>r, p x+q$ $\geq r, p x+q<r$ or $p x+q \leq r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

8.EE.C. 7

Solve linear equations in one variable.
a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).
b. Solve linear equations with rationa number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

A1: A-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions.

A1: A-CED.A. 4

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.

A1: A-REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A1: A-REI.B. 4

Solve quadratic equations in one variable.
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form
$(x-p)^{2}=q$ that has the same solutions.
Derive the quadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as "no real solution."

A1: A-REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
7.EE.B. 4

Use variables to represent quantities in a realworld or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?
b. Solve word problems leading to inequalities of the form $p x+q>r, p x+q$ $\geq r, p x+q<r$ or $p x+q \leq r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

8.EE.C. 7

Solve linear equations in one variable
a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the
form $x=a, a=a$, or $a=b$ results
(where a and b are different numbers).
b. Solve linear equations with rationa number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

A1: A-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions.

A1: A-CED.A. 4

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.

A1: A-REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

A1: A-REI.B. 4

Solve quadratic equations in one variable
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form
$(x-p)^{2}=q$ that has the same solutions.
Derive the quadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as "no real solution."

A1: A-REI.B. 4
 Solve quadratic equations in one variable.

a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as "no real solution."
7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).

8.EF.A. 2

Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=\mathrm{p}$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that V2 is irrational.

A1: A-SSE.B. 3

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
c. Use the properties of exponents to transform expressions for exponential functions emphasizing integer exponents. For example, the growth of bacteria can be modeled by either $f(t)=3^{(t+2)}$ or $g(t)=9\left(3^{t}\right)$ because the expression $3^{(t+2)}$ can be rewritten as $\left(3^{t}\right)\left(3^{2}\right)=9\left(3^{t}\right)$.

A1: A-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions.

A1: A-REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

A1: A-REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A1: A-REI.C. 5
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

A1: A-REI.C. 6

Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
8.EE.C. 8

Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

8.EE.C. 8

Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

A1: A-REI.C. 6

Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

A1: A-REI.C. 5

Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

A1: A-REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

A1: A-REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, piecewise linear (to include absolute value), and exponential functions.

A1: A-REI.D. 12

Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
8.EE.B. 5

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

8.EE.C. 8

Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

	A1: A-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
A1: A-REI.C.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	
A1: A-REI.D.10	
Understand that the graph of an equation in	
two variables is the set of all its solutions	
plotted in the coordinate plane, often forming	
a curve (which could be a line).	

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
8.F.A. 1

Understand that a function is a rule that
assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in this grade level.)

8.F.A. 2

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

8.F.A. 3

Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

A1: F-IF.A. 2
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

A1: F-IF.A. 3

Recognize that sequences are functions whose domain is a subset of the integers. Relate arithmetic sequences to linear functions and geometric sequences to exponential functions.
6.EE.A. 2

Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y.
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.

A1: F-IF.A. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

A1: F-IF.A. 1

Understand that a function from one set

 (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
A1: F-IF.A. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

A1: F-BF.A. 1

Write a linear, quadratic, or exponential function that describes a relationship between two quantities.
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.

Algebra I Standard	Previous Grade(s) Standards	Algebra I Standards Taught in Advance	Algebra I Standards Taught Concurrently
A1: F-IF.B. 4 For linear, piecewise linear (to include absolute value), quadratic, and exponential functions that model a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior.	8.F.B. 5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	A1: F-IF.A. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$. A1: N-Q.A. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
A1: F-IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of personhours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.		A1: F-IF.A. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$. A1: F-IF.B. 4 For linear, piecewise linear (to include absolute value), quadratic, and exponential functions that model a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior.	

A1: F-IF.B. 6
Calculate and interpret the average rate of change of a linear, quadratic, piecewise linear (to include absolute value), and exponential function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

A1: F-IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph piecewise linear (to include absolute value) and exponential functions.

A1: F-IF.C. 8

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

8.F.B. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.EE.B. 5

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

8.F.A. 3

Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a

straight line.

7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).

A1: F-IF.A. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

A1: F-IF.A. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

A1: F-IF.C. 8

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

A1: F-BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative). Without technology, find the value of k given the graphs of linear and quadratic functions. With technology, experiment with cases and illustrate an explanation of the effects on the graph that include cases where $f(x)$ is a linear, quadratic, piecewise linear (to include absolute value) or exponential function.

A1: F-IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph piecewise linear (to include absolute value) and exponential functions.

A1: F-IF.C. 9

Compare properties of two functions (linear, quadratic, piecewise linear [to include absolute value] or exponential) each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, determine which has the larger maximum.

A1: F-BF.A. 1

Write a linear, quadratic, or exponential function that describes a relationship between two quantities.
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.

A1: F-BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative). Without technology, find the value of k given the graphs of linear and quadratic functions. With technology, experiment with cases and illustrate an explanation of the effects on the graph that include cases where $f(x)$ is a linear, quadratic, piecewise linear (to include absolute value) or exponential function.

A1: F-IF.B. 4

For linear, piecewise linear (to include absolute value), quadratic, and exponential functions that model a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior.

A1: F-IF.C. 8

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

A1: F-IF.A. 3

Recognize that sequences are functions whose domain is a subset of the integers. Relate arithmetic sequences to linear functions and geometric sequences to exponential functions.

A1: F-IF.C. 7
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph piecewise linear (to include absolute value) and exponential functions.

A1: F-LE.A. 1
Distinguish between situations that can be modeled with linear functions and with exponential functions.
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

A1: F-LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
8.F.A. 3

Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points
$(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

8.F.B. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.F.B. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

A1: F-LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity grows or decays by a constant percent
rate per unit interval relative to another.
quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

A1: F-LE.B. 5

Interpret the parameters in a linear or exponential function in terms of a context.

A1: F-LE.A. 1
Distinguish between situations that can be modeled with linear functions and with exponential functions.
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity
grows or decays by a constant percent
rate per unit interval relative to another.

A1: F-BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative). Without technology, find the value of k given the graphs of linear and quadratic functions. With technology, experiment with cases and illustrate an explanation of the effects on the graph that include cases where $f(x)$ is a linear, quadratic, piecewise linear (to include absolute value) or exponential function

A1: F-LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

A1: S-ID.A. 2
Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

A1: S-ID.A. 3

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
6.SP.A. 2

Understand that a set of data collected to answer a statistical question has a
distribution which can be described by its center, spread, and overall shape.
6.SP.B. 5

Summarize numerical data sets in relation to their context, such as by:
a. Reporting the number of observations.
b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

6.SP.B. 5

Summarize numerical data sets in relation to their context, such as by:
a. Reporting the number of observations.
b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

A1: S-ID.A. 3

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

A1: S-ID.A. 2

Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

A1: S-ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and quadratic models.
b. Informally assess the fit of a function by plotting and analyzing residuals.
c. Fit a linear function for a scatter plot that suggests a linear association.
8.SP.A. 4

Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?

.SP.A. 1

Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

8.SP.A. 2

Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
8.SP.A. 3

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.

A1: S-ID.C. 7
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

A1: S-ID.C. 8

Compute (using technology) and interpret the correlation coefficient of a linear fit.

A1: S-ID.C. 9

Distinguish between correlation and causation.
8.SP.A. 3

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.

A1: S-ID.B. 6
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and quadratic models.
b. Informally assess the fit of a function by plotting and analyzing residuals.
c. Fit a linear function for a scatter plot that suggests a linear association.

A1: S-ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and quadratic models.
b. Informally assess the fit of a function by plotting and analyzing residuals.
c. Fit a linear function for a scatter plot that suggests a linear association.

A1: S-ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and quadratic models.
b. Informally assess the fit of a function by plotting and analyzing residuals.
c. Fit a linear function for a scatter plot that suggests a linear association.

A1: S-ID.C. 9

Distinguish between correlation and causation.

A1: S-ID.C. 8

Compute (using technology) and interpret the correlation coefficient of a linear fit.

