

Geometry Learning Acceleration Guidance

Learning acceleration will ensure students have the skills they need to equitably access and practice on-grade level content. This chart is a reference guide for teachers to help them more quickly identify the specific prerequisite and co-requisite standards necessary for every Geometry math standard. Students should spend the large majority of their time on the major work of the grade (\blacksquare). Supporting work (\blacksquare) and, where appropriate, additional work (\blacksquare) can engage students in the major work of the grade.

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-CO.A.1	4.MD.C.5		
Know precise definitions of angle, circle,	Recognize angles as geometric shapes that		
perpendicular line, parallel line, and line	are formed wherever two rays share a		
segment, based on the undefined notions of	common endpoint, and understand concepts		
point, line, distance along a line, and distance	of angle measurement.		
around a circular arc.	a. An angle is measured with reference to a		
	circle with its center at the common		
	endpoint of the rays, by considering the		
	fraction of the circular arc between the		
	points where the two rays intersect the		
	circle.		
	b. An angle that turns through 1/360 of a		
	circle is called a "one-degree angle," and		
	can be used to measure angles.		
	c. An angle that turns through n one-		
	degree angles is said to have an angle		
	measure of n degrees.		
	4.G.A.1		
	Draw points, lines, line segments, rays, angles		
	(right, acute, obtuse), and perpendicular and		
	parallel lines. Identify these in two-		
	dimensional figures.		
	4.G.A.2		
	Classify two-dimensional figures based on the		
	presence or absence of parallel or		
	perpendicular lines, or the presence or		
	absence of angles of a specified size.		
	Recognize right triangles as a category, and		
	identify right triangles.		

Geometry Standard

GM: G-CO.A.2

Represent transformations in the plane using, e.g., transparencies, tracing paper, or geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

Previous Grade(s) Standards

Geometry Standards Taught in Advance

Geometry Standards Taught Concurrently

GM: G-CO.A.3

Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. GM: G-CO.A.5

Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

8.G.A.1

Verify experimentally the properties of rotations, reflections, and translations:

- a. Lines are taken to lines, and line segments to line segments of the same length.
- b. Angles are taken to angles of the same measure.

Parallel lines are taken to parallel lines. c. 8.G.A.2

Explain that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. (Rotations are only about the origin and reflections are only over the y-axis and x-axis in Grade 8.)

8.G.A.3

Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x-axis in Grade 8.)

8.G.A.4

Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x-axis in Grade 8.)

A1: F-BF.B.3

Identify the effect on the graph of replacing f(x)by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative). Without technology, find the value of k given the graphs of linear and quadratic functions. With technology, experiment with cases and illustrate an explanation of the effects on the graph that include cases where f(x) is a linear, quadratic, piecewise linear (to include absolute value) or exponential function.

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-CO.A.3	8.G.A.2		GM: G-CO.A.2
Given a rectangle, parallelogram, trapezoid,	Explain that a two-dimensional figure is		Represent transformations in the plane using,
or regular polygon, describe the rotations and	congruent to another if the second can be		e.g., transparencies, tracing paper, or geometry
reflections that carry it onto itself.	obtained from the first by a sequence of		software; describe transformations as functions
	rotations, reflections, and translations; given		that take points in the plane as inputs and give
	two congruent figures, describe a sequence		other points as outputs. Compare
	that exhibits the congruence between them.		transformations that preserve distance and
	(Rotations are only about the origin and reflections are only over the <i>y</i> -axis and <i>x</i> -axis		angle to those that do not (e.g., translation versus horizontal stretch).
	in Grade 8.)		GM: G-CO.A.4
	8.G.A.3		Develop definitions of rotations, reflections, and
	Describe the effect of dilations, translations,		translations in terms of angles, circles,
	rotations, and reflections on two-dimensional		perpendicular lines, parallel lines, and line
	figures using coordinates. (Rotations are only		segments.
	about the origin, dilations only use the origin		GM: G-CO.A.5
	as the center of dilation, and reflections are		Given a geometric figure and a rotation,
	only over the <i>y</i> -axis and <i>x</i> -axis in Grade 8.)		reflection, or translation, draw the transformed
			figure using, e.g., graph paper, tracing paper, or
			geometry software. Specify a sequence of
			transformations that will carry a given figure onto another.
GM: G-CO.A.4	8.G.A.1	GM: G-CO.A.1	GM: G-CO.A.3
Develop definitions of rotations, reflections,	Verify experimentally the properties of rotations,	Know precise definitions of angle, circle,	Given a rectangle, parallelogram, trapezoid, or
and translations in terms of angles, circles,	reflections, and translations:	perpendicular line, parallel line, and line	regular polygon, describe the rotations and
perpendicular lines, parallel lines, and line	a. Lines are taken to lines, and line segments to	segment, based on the undefined notions of	reflections that carry it onto itself.
segments.	line segments of the same length.	point, line, distance along a line, and distance	
	 Angles are taken to angles of the same measure. 	around a circular arc.	
	c. Parallel lines are taken to parallel lines.		
	8.G.A.3		
	Describe the effect of dilations, translations,		
	rotations, and reflections on two-dimensional		
	figures using coordinates. (Rotations are only		
	about the origin, dilations only use the origin		
	as the center of dilation, and reflections are		
	only over the <i>y</i> -axis and <i>x</i> -axis in Grade 8.)		

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-CO.A.5	8.G.A.2		GM: G-CO.A.2
Given a geometric figure and a rotation,	Explain that a two-dimensional figure is		Represent transformations in the plane using,
reflection, or translation, draw the	congruent to another if the second can be		e.g., transparencies, tracing paper, or geometry
transformed figure using, e.g., graph paper,	obtained from the first by a sequence of		software; describe transformations as functions
tracing paper, or geometry software. Specify	rotations, reflections, and translations; given		that take points in the plane as inputs and give
a sequence of transformations that will carry	two congruent figures, describe a sequence		other points as outputs. Compare
a given figure onto another.	that exhibits the congruence between them.		transformations that preserve distance and
	(Rotations are only about the origin and		angle to those that do not (e.g., translation
	reflections are only over the y-axis and x-axis		versus horizontal stretch).
	in Grade 8.)		GM: G-CO.A.3
	8.G.A.3		Given a rectangle, parallelogram, trapezoid, or
	Describe the effect of dilations, translations,		regular polygon, describe the rotations and
	rotations, and reflections on two-dimensional		reflections that carry it onto itself.
	figures using coordinates. (Rotations are only		
	about the origin, dilations only use the origin		
	as the center of dilation, and reflections are		
	only over the y-axis and x-axis in Grade 8.)		
GM: G-CO.B.6	8.G.A.2	GM: G-CO.A.5	
Use geometric descriptions of rigid motions	Explain that a two-dimensional figure is	Given a geometric figure and a rotation,	
to transform figures and to predict the effect	congruent to another if the second can be	reflection, or translation, draw the	
of a given rigid motion on a given figure; given	obtained from the first by a sequence of	transformed figure using, e.g., graph paper,	
two figures, use the definition of congruence	rotations, reflections, and translations; given	tracing paper, or geometry software. Specify	
in terms of rigid motions to decide if they are	two congruent figures, describe a sequence	a sequence of transformations that will carry	
congruent.	that exhibits the congruence between them.	a given figure onto another.	
	(Rotations are only about the origin and		
	reflections are only over the y-axis and x-axis		
	in Grade 8.)		
GM: G-CO.B.7	8.G.A.2	GM: G-CO.B.6	
Use the definition of congruence in terms of	Explain that a two-dimensional figure is	Use geometric descriptions of rigid motions	
rigid motions to show that two triangles are	congruent to another if the second can be	to transform figures and to predict the effect	
congruent if and only if corresponding pairs of	obtained from the first by a sequence of	of a given rigid motion on a given figure; given	
sides and corresponding pairs of angles are	rotations, reflections, and translations; given	two figures, use the definition of congruence	
congruent.	two congruent figures, describe a sequence	in terms of rigid motions to decide if they are	
-	that exhibits the congruence between them.	congruent.	
	(Rotations are only about the origin and		
	reflections are only over the y-axis and x-axis		
	in Grade 8.)		
GM: G-CO.B.8	8.G.A.2	GM: G-CO.B.7	
Explain how the criteria for triangle	Explain that a two-dimensional figure is	Use the definition of congruence in terms of	
congruence (ASA, SAS, and SSS) follow from	congruent to another if the second can be	rigid motions to show that two triangles are	
the definition of congruence in terms of rigid	obtained from the first by a sequence of	congruent if and only if corresponding pairs of	
motions.	rotations, reflections, and translations; given	sides and corresponding pairs of angles are	
	two congruent figures, describe a sequence	congruent.	
	that exhibits the congruence between them.	_	
	(Rotations are only about the origin and		
	reflections are only over the <i>y</i> -axis and <i>x</i> -axis		
	in Grade 8.)		

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-CO.C.9	4.MD.C.7	GM: G-CO.A.1	
Prove and apply theorems about lines and	Recognize angle measure as additive. When	Know precise definitions of angle, circle,	
angles. Theorems include: vertical angles are	an angle is decomposed into non-overlapping	perpendicular line, parallel line, and line	
congruent; when a transversal crosses parallel	parts, the angle measure of the whole is the	segment, based on the undefined notions of	
lines, alternate interior angles are congruent	sum of the angle measures of the parts. Solve	point, line, distance along a line, and distance	
and corresponding angles are congruent;	addition and subtraction problems to find	around a circular arc.	
points on a perpendicular bisector of a line	unknown angles on a diagram in real-world		
segment are exactly those equidistant from	and mathematical problems, e.g., by using an		
the segment's endpoints.	equation with a letter for the unknown angle		
the segment's enupoints.	measure.		
	7.G.B.5		
	Use facts about supplementary,		
	complementary, vertical, and adjacent angles		
	in a multi-step problem to write and solve		
	simple equations for an unknown angle in a		
	figure.		
	8.G.A.5		
	Use informal arguments to establish facts		
	about the angle sum and exterior angle of		
	triangles, about the angles created when		
	parallel lines are cut by a transversal, and the		
	angle-angle criterion for similarity of		
	triangles. For example, arrange three copies		
	of the same triangle so that the sum of the		
	three angles appears to form a line, and give		
	an argument in terms of transversals why this		
	is so.		
GM: G-CO.C.10	7.G.A.2	GM: G-CO.B.8	
Prove and apply theorems about	Draw (freehand, with ruler and protractor, or	Explain how the criteria for triangle	
triangles. Theorems include: measures of	with technology) geometric shapes with given	congruence (ASA, SAS, and SSS) follow from	
interior angles of a triangle sum to 180°; base	conditions. (Focus is on triangles from three	the definition of congruence in terms of rigid	
angles of isosceles triangles are congruent;	measures of angles or sides, noticing when	motions.	
the segment joining midpoints of two sides of	the conditions determine one and only one	GM: G-CO.C.9	
a triangle is parallel to the third side and half	triangle, more than one triangle, or no	Prove and apply theorems about lines and	
the length; the medians of a triangle meet at	triangle.	angles. Theorems include: vertical angles are	
a point.	8.G.A.5	congruent; when a transversal crosses parallel	
u point.	Use informal arguments to establish facts	lines, alternate interior angles are congruent	
	about the angle sum and exterior angle of	and corresponding angles are congruent;	
	triangles, about the angles created when	points on a perpendicular bisector of a line	
	parallel lines are cut by a transversal, and the	segment are exactly those equidistant from	
	angle-angle criterion for similarity of	the segment's endpoints.	
	triangles. For example, arrange three copies		
	of the same triangle so that the sum of the		
	three angles appears to form a line, and give		
	an argument in terms of transversals why this		
	is so.		

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-CO.C.11	5.G.B.3	GM: G-CO.B.8	
Prove and apply theorems about	Understand that attributes belonging to a	Explain how the criteria for triangle	
parallelograms. Theorems include: opposite	category of two-dimensional figures also	congruence (ASA, SAS, and SSS) follow from	
sides are congruent, opposite angles are	belong to all subcategories of that category.	the definition of congruence in terms of rigid	
congruent, the diagonals of a parallelogram	For example, all rectangles have four right	motions.	
bisect each other, and conversely, rectangles	angles and squares are rectangles, so all	GM: G-CO.C.9	
are parallelograms with congruent diagonals.	squares have four right angles.	Prove and apply theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.	
GM: G-CO.D.12	4.MD.C.6	GM: G-CO.A.1	
Make formal geometric constructions with a variety of tools and methods, e.g., compass and straightedge, string, reflective devices, paper folding, or dynamic geometric software. Examples: <i>Copying a segment;</i> <i>copying an angle; bisecting a segment;</i> <i>bisecting an angle; constructing perpendicular</i> <i>lines, including the perpendicular bisector of a</i> <i>line segment; and constructing a line parallel</i> <i>to a given line through a point not on the line.</i>	Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. 7.G.A.2 Draw (freehand, with ruler and protractor, or with technology) geometric shapes with given conditions. (Focus is on triangles from three measures of angles or sides, noticing when the conditions determine one and only one triangle, more than one triangle, or no triangle.	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	
GM: G-CO.D.13	7.G.A.2	GM: G-CO.C.9	
Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	Draw (freehand, with ruler and protractor, or with technology) geometric shapes with given conditions. (Focus is on triangles from three measures of angles or sides, noticing when the conditions determine one and only one triangle, more than one triangle, or no triangle.	Prove and apply theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. GM: G-CO.D.12 Make formal geometric constructions with a variety of tools and methods, e.g., compass and straightedge, string, reflective devices, paper folding, or dynamic geometric software. Examples: Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	

Geometry Standard GM: G-SRT.A.1	Previous Grade(s) Standards 8.G.A.4	Geometry Standards Taught in Advance GM: G-CO.A.2	Geometry Standards Taught Concurrently
Verify experimentally the properties of dilations given by a center and a scale factor:a. A dilation takes a line not passing through the center of the dilation to a	Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and	Represent transformations in the plane using, e.g., transparencies, tracing paper, or geometry software; describe transformations as functions that take points in the plane as	
b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.	dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the <i>y</i> -axis and <i>x</i> -axis in Grade 8.)	inputs and give other points in the plane as Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).	
GM: G-SRT.A.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	8.G.A.4 Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the <i>y</i> -axis and <i>x</i> -axis in Grade 8.)	 GM: G-SRT.A.1 Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. 	
GM: G-SRT.A.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.	 8.G.A.4 Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the <i>y</i>-axis and <i>x</i>-axis in Grade 8.) 8.G.A.5¹ Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so. 	GM: G-SRT.A.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-SRT.B.4	8.G.B.6	GM: G-SRT.A.3	
Prove and apply theorems about	Explain a proof of the Pythagorean Theorem	Use the properties of similarity	
triangles. Theorems include: a line parallel to	and its converse using the area of squares.	transformations to establish the AA criterion	
one side of a triangle divides the other two		for two triangles to be similar.	
proportionally, and conversely; the			
Pythagorean Theorem proved using triangle			
similarity; SAS similarity criteria, SSS similarity			
criteria, AA similarity criteria.			
GM: G-SRT.B.5		GM: G-CO.B.8	
Use congruence and similarity criteria for		Explain how the criteria for triangle	
triangles to solve problems and to prove relationships in geometric figures.		congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid	
relationships in geometric rigures.		motions.	
		GM: G-SRT.A.3	
		Use the properties of similarity	
		transformations to establish the AA criterion	
		for two triangles to be similar.	
GM: G-SRT.C.6		GM: G-SRT.A.2	
Understand that by similarity, side ratios in		Given two figures, use the definition of	
right triangles, including special right triangles		similarity in terms of similarity	
(30-60-90 and 45-45-90), are properties of the		transformations to decide if they are similar;	
angles in the triangle, leading to definitions of		explain using similarity transformations the	
trigonometric ratios for acute angles.		meaning of similarity for triangles as the	
		equality of all corresponding pairs of angles	
		and the proportionality of all corresponding	
		pairs of sides.	
GM: G-SRT.C.7	7.G.B.5	GM: G-SRT.C.6	
Explain and use the relationship between the sine and cosine of complementary angles.	Use facts about supplementary, complementary, vertical, and adjacent angles	Understand that by similarity, side ratios in right triangles, including special right triangles	
sine and cosine of complementary angles.	in a multi-step problem to write and solve	(30-60-90 and 45-45-90), are properties of the	
	simple equations for an unknown angle in a	angles in the triangle, leading to definitions of	
	figure.	trigonometric ratios for acute angles.	
GM: G-SRT.C.8	8.G.B.7	GM: G-SRT.B.4	
Use trigonometric ratios and the Pythagorean	Apply the Pythagorean Theorem to determine	Prove and apply theorems about	
Theorem to solve right triangles in applied	unknown side lengths in right triangles in real-	triangles. Theorems include: a line parallel to	
problems.	world and mathematical problems in two and	one side of a triangle divides the other two	
	three dimensions.	proportionally, and conversely; the	
		Pythagorean Theorem proved using triangle	
		similarity; SAS similarity criteria, SSS similarity	
		criteria, ASA similarity.	

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-C.A.1		GM: G-SRT.A.2	
Prove that all circles are similar.		Given two figures, use the definition of	
		similarity in terms of similarity	
		transformations to decide if they are similar;	
		explain using similarity transformations the	
		meaning of similarity for triangles as the	
		equality of all corresponding pairs of angles	
		and the proportionality of all corresponding	
		pairs of sides.	
GM: G-C.A.2		GM: G-CO.C.10	
Identify and describe relationships among		Prove and apply theorems about	
inscribed angles, radii, and chords, including		triangles. Theorems include: measures of	
the following: the relationship that exists		interior angles of a triangle sum to 180°; base	
between central, inscribed, and circumscribed		angles of isosceles triangles are congruent;	
angles; inscribed angles on a diameter are		the segment joining midpoints of two sides of	
right angles; and a radius of a circle is		a triangle is parallel to the third side and half	
perpendicular to the tangent where the radius		the length; the medians of a triangle meet at	
intersects the circle.		a point.	
GM: G-C.A.3		GM: G-C.A.2	
Construct the inscribed and circumscribed		Identify and describe relationships among	
circles of a triangle, and prove properties of		inscribed angles, radii, and chords, including	
angles for a quadrilateral inscribed in a circle.		the following: the relationship that exists between central, inscribed, and circumscribed	
		angles; inscribed angles on a diameter are	
		right angles; and a radius of a circle is	
		perpendicular to the tangent where the radius	
		intersects the circle.	
GM: G-C.B.5		GM: G-CO.B.8	
Use similarity to determine that the length of		Explain how the criteria for triangle	
the arc intercepted by an angle is		congruence (ASA, SAS, and SSS) follow from	
proportional to the radius, and define the		the definition of congruence in terms of rigid	
radian measure of the angle as the constant		motions.	
of proportionality; derive the formula for the		GM: G-C.A.2	
area of a sector.		Identify and describe relationships among	
		inscribed angles, radii, and chords, including	
		the following: the relationship that exists	
		between central, inscribed, and circumscribed	
		angles; inscribed angles on a diameter are	
		right angles; and a radius of a circle is	
		perpendicular to the tangent where the radius	
		intersects the circle.	

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-GPE.A.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	 8.G.B.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. A1: A-REI.B.4 Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in <i>x</i> into an equation of the form (<i>x</i> - <i>p</i>)² = <i>q</i> that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for <i>x</i>² = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as "no real solution." 	GM: G-SRT.B.4 Prove and apply theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity; SAS similarity criteria, SSS similarity criteria, ASA similarity. GM: G-SRT.C.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.	
GM: G-GPE.B.4 Use coordinates to prove simple geometric theorems algebraically. <i>For example, prove or</i> <i>disprove that a figure defined by four given</i> <i>points in the coordinate plane is a rectangle;</i> <i>prove or disprove that the point (1, v3) lies on</i> <i>the circle centered at the origin and</i> <i>containing the point (0, 2).</i>	8.G.B.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.		
GM: G-GPE.B.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).	8.EE.B.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b. 8.F.A.3 Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A = s^2 giving$ the area of a square as a function of its side length is not linear because its graph contains the points $(1, 1), (2, 4)$ and $(3, 9)$, which are not on a straight line.		

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-GPE.B.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.		GM: G-CO.C.9 Prove and apply theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. GM: G-SRT.A.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	
GM: G-GPE.B.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	8.G.B.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	GM: G-SRT.B.4 Prove and apply theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity; SAS similarity criteria, SSS similarity criteria, ASA similarity.	
GM: G-GMD.A.1 Give an informal argument, e.g., dissection arguments, Cavalieri's principle, and informal limit arguments, for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone.	7.G.B.4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.		
GM: G-GMD.A.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.	8.G.C.9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	GM: G-GMD.A.1 Give an informal argument, e.g., dissection arguments, Cavalieri's principle, and informal limit arguments, for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone.	
GM: G-GMD.B.4 Identify the shapes of two-dimensional cross- sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.	7.G.A.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.		

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: G-MG.A.1	6.G.A.4		
Use geometric shapes, their measures, and	Represent three-dimensional figures using		
their properties to describe objects (e.g.,	nets made up of rectangles and triangles, and		
modeling a tree trunk or a human torso as a	use the nets to find the surface area of these		
cylinder).	figures. Apply these techniques in the context		
	of solving real-world and mathematical		
	problems.		
	7.G.B.6		
	Solve real-world and mathematical problems		
	involving area, volume and surface area of		
	two- and three-dimensional objects		
	composed of triangles, quadrilaterals,		
	polygons, cubes, and right prisms. (Pyramids limited to surface area only.)		
GM: G-MG.A.2	7.G.B.6	GM: G-MG.A.1	
Apply concepts of density based on area and	Solve real-world and mathematical problems	Use geometric shapes, their measures, and	
volume in modeling situations (e.g., persons	involving area, volume and surface area of	their properties to describe objects (e.g.,	
per square mile, BTUs per cubic foot).	two- and three-dimensional objects	modeling a tree trunk or a human torso as a	
	composed of triangles, quadrilaterals,	cylinder).	
	polygons, cubes, and right prisms. (Pyramids	GM: G-MG.A.3	
	limited to surface area only.)	Apply geometric methods to solve design	
	8.G.C.9	problems (e.g., designing an object or	
	Know the formulas for the volumes of cones,	structure to satisfy physical constraints or	
	cylinders, and spheres and use them to solve	minimize cost; working with typographic grid	
	real-world and mathematical problems.	systems based on ratios).	
GM: G-MG.A.3	<mark>7.G.A.1</mark>		
Apply geometric methods to solve design	Solve problems involving scale drawings of		
problems (e.g., designing an object or	geometric figures, including computing actual		
structure to satisfy physical constraints or	lengths and areas from a scale drawing and		
minimize cost; working with typographic grid	reproducing a scale drawing at a different		
systems based on ratios).	scale. 7.G.B.6		
	Solve real-world and mathematical problems		
	involving area, volume and surface area of		
	two- and three-dimensional objects		
	composed of triangles, quadrilaterals,		
	polygons, cubes, and right prisms. (Pyramids		
	limited to surface area only.)		
	8.G.C.9		
	Know the formulas for the volumes of cones,		
	cylinders, and spheres and use them to solve		
	real-world and mathematical problems.		

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: S-CP.A.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	 7.SP.C.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event. c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood? 		
GM: S-CP.A.2 Understand that two events <i>A</i> and <i>B</i> are independent if the probability of <i>A</i> and <i>B</i> occurring together is the product of their probabilities, and use this characterization to determine if they are independent. GM: S-CP.A.3 Understand the conditional probability of <i>A</i> given <i>B</i> as <i>P</i> (<i>A</i> and <i>B</i>)/ <i>P</i> (<i>B</i>), and interpret independence of <i>A</i> and <i>B</i> as saying that the conditional probability of <i>A</i> given <i>B</i> is the same as the probability of <i>A</i> , and the conditional probability of <i>B</i> given <i>A</i> is the same as the probability of <i>B</i> .		GM: S-CP.A.1Describe events as subsets of a sample space(the set of outcomes) using characteristics (orcategories) of the outcomes, or as unions,intersections, or complements of otherevents ("or," "and," "not").GM: S-CP.A.1Describe events as subsets of a sample space(the set of outcomes) using characteristics (orcategories) of the outcomes, or as unions,intersections, or complements of otherevents ("or," "and," "not").GM: S-CP.A.2Understand that two events A and B areindependent if the probability of A and Boccurring together is the product of theirprobabilities, and use this characterization todetermine if they are independent.	

Geometry Standard	Previous Grade(s) Standards	Geometry Standards Taught in Advance	Geometry Standards Taught Concurrently
GM: S-CP.A.4	A1: S-ID.B.5	GM: S-CP.A.2	
Construct and interpret two-way frequency	Summarize categorical data for two	Understand that two events A and B are	
tables of data when two categories are	categories in two-way frequency tables.	independent if the probability of A and B	
associated with each object being classified.	Interpret relative frequencies in the context	occurring together is the product of their	
Use the two-way table as a sample space to	of the data (including joint, marginal, and	probabilities, and use this characterization to	
decide if events are independent and to	conditional relative frequencies). Recognize	determine if they are independent.	
approximate conditional probabilities. For	possible associations and trends in the data.	GM: S-CP.A.3	
example, collect data from a random sample		Understand the conditional probability of A	
of students in your school on their favorite		given B as P(A and B)/P(B), and interpret	
subject among math, science, and English.		independence of A and B as saying that the	
Estimate the probability that a randomly		conditional probability of A given B is the	
selected student from your school will favor		same as the probability of A, and the	
science given that the student is in tenth		conditional probability of B given A is the	
grade. Do the same for other subjects and		same as the probability of <i>B</i> .	
compare the results.			
GM: S-CP.A.5		GM: S-CP.A.3	
Recognize and explain the concepts of		Understand the conditional probability of A	
conditional probability and independence in		given B as $P(A \text{ and } B)/P(B)$, and interpret	
everyday language and everyday situations.		independence of A and B as saying that the	
For example, compare the chance of having		conditional probability of A given B is the	
lung cancer if you are a smoker with the		same as the probability of A, and the	
chance of being a smoker if you have lung		conditional probability of <i>B</i> given <i>A</i> is the	
cancer.		same as the probability of <i>B</i> .	
GM: S-CP.B.6		GM: S-CP.A.3	
Find the conditional probability of A given B		Understand the conditional probability of A	
as the fraction of B's outcomes that also		given B as $P(A \text{ and } B)/P(B)$, and interpret	
belong to A, and interpret the answer in terms of the model.		independence of A and B as saying that the	
terms of the model.		conditional probability of <i>A</i> given <i>B</i> is the same as the probability of <i>A</i> , and the	
		conditional probability of <i>B</i> given <i>A</i> is the	
		same as the probability of <i>B</i> .	
GM: S-CP.B.7		GM: S-CP.A.1	
Apply the Addition Rule, $P(A \text{ or } B) = P(A) +$		Describe events as subsets of a sample space	
P(B) - P(A and B), and interpret the answer in		(the set of outcomes) using characteristics (or	
terms of the model.		categories) of the outcomes, or as unions,	
		intersections, or complements of other	
		events ("or," "and," "not").	
		GM: S-CP.A.3	
		Understand the conditional probability of A	
		given B as $P(A \text{ and } B)/P(B)$, and interpret	
		independence of A and B as saying that the	
		conditional probability of A given B is the	
		same as the probability of A, and the	
		conditional probability of B given A is the	
		same as the probability of B.	