Assessment Guide for Grade 4 Mathematics

This guide includes:

- Purpose
- Assessment Design
- Test Administration
- Sample Test Items
- Resources
- Appendix A: Assessable Content
- Appendix B: Answer Key/Rubrics for Sample Items
- Appendix C: Update Log

PURPOSE

This document is designed to assist Louisiana educators in understanding the LEAP 2025 mathematics assessment for grade 4.

Introduction

All students in grades 3–HS will take the LEAP 2025 mathematics assessments, which provide:

- questions that have been reviewed by Louisiana educators to ensure their alignment to the Louisiana Student Standards and appropriateness for Louisiana students;
- measurement of the full range full range of student performance, including the performance of high- and low-performing students; and
- information for educators and parents about student readiness mathematics and whether students are “on track” for college and careers.

Mathematics Vision for Instruction and Assessment

Students in Louisiana are ready for college or a career if they are able to meet college and workplace expectations without needing remediation in mathematics skills and concepts. The Louisiana Student Standards for Mathematics (LSSM) support students to become mathematically proficient by focusing on three components of rigor: conceptual understanding, procedural skill and fluency, and application.
• **Conceptual understanding** refers to understanding mathematical concepts, operations, and relations. It is more than knowing isolated facts and methods. Students should be able to make sense of why a mathematical idea is important and the kinds of contexts in which it is useful. It also allows students to connect prior knowledge to new ideas and concepts.

• **Procedural Skill and Fluency** is the ability to apply procedures accurately, efficiently, and flexibly. It requires speed and accuracy in calculation while giving students opportunities to practice basic skills. Students’ ability to solve more complex application tasks is dependent on procedural skill and fluency.

• **Application** provides a valuable context for learning and the opportunity to solve problems in a relevant and a meaningful way. It is through real-world application that students learn to select an efficient method to find a solution, determine whether the solution(s) makes sense by reasoning, and develop critical thinking skills.

ASSESSMENT DESIGN

Supporting Key Goals in Mathematics Instruction

The LEAP 2025 Mathematics Assessments focus on testing the LSSM according to the components of rigor reflected in high-quality mathematics instructional tasks that:

- require students to demonstrate understanding of mathematical reasoning in mathematical and applied contexts;
- assess accurate, efficient, and flexible application of procedures and algorithms;
- rely on application of procedural skill and fluency to solve complex problems; and
- require students to demonstrate mathematical reasoning and modeling in real-world contexts.

Assessable Content

Each item on the LEAP 2025 mathematics assessment is referred to as a task and is identified by one of three types: Type I, Type II, or Type III. The tasks on the LEAP 2025 mathematics test are aligned directly to the [Louisiana Student Standards for Mathematics (LSSM)](https://www.louisiana.gov/cms/1612) for all reporting categories.

- **Type I** tasks, designed to assess conceptual understanding, fluency, and application, are aligned to the major, additional, and supporting content for grade 4. Some Type I tasks may be further aligned to LEAP 2025 evidence statements for the Major Content and Additional & Supporting reporting categories and allow for the testing of more than one of the student standards on a single task.

- **Type II** tasks are designed to assess student reasoning ability of selected major content for grades 3 or 4 in applied contexts.

- **Type III** tasks are designed to assess student modeling ability of selected content for grades 3 or 4 in applied contexts. Type II and III tasks are further aligned to LEAP 2025 evidence statements for the Expressing Mathematical Reasoning and Modeling & Application reporting categories.

All tasks are reviewed and vetted by teacher committees to verify direct and full alignment to the LSSM. LEAP 2025 evidence statements for grade 4 are labeled as “LEAP.I.4.#” for Type I tasks, “LEAP.II.4.#” for Type II tasks, and “LEAP.III.4.#” for Type III tasks. See the table in [Appendix A](#) for a listing of assessable content of the LSSM and LEAP 2025 evidence statements.
Each of the three task types is aligned to one of four reporting categories: Major Content, Additional & Supporting Content, Expressing Mathematical Reasoning, or Modeling & Application. Each task type is designed to align with at least one of the Louisiana Student Standards for Mathematical Practice (MP), found on pages 6-8 in the *K-12 Louisiana Student Standards for Mathematics*.

<table>
<thead>
<tr>
<th>Task Type</th>
<th>Description</th>
<th>Reporting Category</th>
<th>Mathematical Practice (MP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>conceptual understanding, fluency, and application</td>
<td>Major Content: solve problems involving the major content for grade 4 Additional & Supporting Content: solve problems involving the additional and supporting content for grade 4</td>
<td>can involve any or all practices</td>
</tr>
<tr>
<td>Type II</td>
<td>written arguments/justifications, critique of reasoning, or precision in mathematical statements</td>
<td>Expressing Mathematical Reasoning: express mathematical reasoning by constructing mathematical arguments and critiques</td>
<td>primarily MP.3 and MP.6, but may also involve any of the other practices</td>
</tr>
<tr>
<td>Type III</td>
<td>modeling/application in a real-world context or scenario</td>
<td>Modeling & Application: solve real-world problems engaging particularly in the modeling practice</td>
<td>primarily MP.4, but may also involve any of the other practices</td>
</tr>
</tbody>
</table>

The Major Content reporting category will be divided, based on *Achievement Level Descriptors* into the following subcategories.

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Associated LSSM and LEAP 2025 Evidence Statements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare and Solve Problems with Fractions</td>
<td>4.NF.A.1, 4.NF.A.2, 4.NF.B.3, 4.NF.B.4, LEAP.I.4.1, LEAP.I.4.6</td>
<td>Students understand the concept of a fraction, recognize and generate equivalent fractions, and compare fractions. Students understand and solve mathematical and word problems involving addition, subtraction, and multiplication of fractions.</td>
</tr>
<tr>
<td>Solve Multi-Step Problems</td>
<td>4.OA.A.1, 4.OA.A.2, 4.OA.A.3, 4.OA.A.4, 4.OA.A.5</td>
<td>Students solve multi-step word problems using the four operations with multi-digit whole numbers, including interpreting remainders.</td>
</tr>
<tr>
<td>Multiplicative Comparison and Place Value</td>
<td>4.OA.A.1, 4.OA.A.2, 4.OA.A.3</td>
<td>Students recognize, interpret, and represent comparisons using multiplications equations and statements of comparison. Students read, write, compare, and round multi-digit whole numbers.</td>
</tr>
</tbody>
</table>

These reporting categories will provide parents and educators valuable information about:

- overall student performance, including readiness to continue further studies in mathematics;
- student performance broken down by mathematics content and practices, which may help identify when students need additional support or more challenging work;
• student performance in Major Content broken down by content subcategories, which may help teachers and schools hone in on specific content for professional development; and
• how well schools and districts are helping students achieve higher expectations.

Achievement-Level Definitions
Achievement-level definitions briefly describe the expectations for student performance at each of Louisiana’s five achievement levels, described below:

- **Advanced**: Students performing at this level have exceeded college and career readiness expectations, and are well prepared for the next level of studies in this content area.
- **Mastery**: Students performing at this level have met college and career readiness expectations, and are prepared for the next level of studies in this content area.
- **Basic**: Students performing at this level have nearly met college and career readiness expectations, and may need additional support to be fully prepared for the next level of studies in this content area.
- **Approaching Basic**: Students performing at this level have partially met college and career readiness expectations, and will need much support to be prepared for the next level of studies in this content area.
- **Unsatisfactory**: Students performing at this level have not yet met the college and career readiness expectations, and will need extensive support to be prepared for the next level of studies in this content area.

Test Design
The LEAP 2025 mathematics assessment in grade 4 contains a total of 43 tasks for 62 points. The table below shows the breakdown of the number of tasks and point values by Reporting Category and Session.

<table>
<thead>
<tr>
<th>Reporting Category</th>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tasks</td>
<td>Points</td>
<td>Tasks</td>
<td>Points</td>
</tr>
<tr>
<td>Major Content</td>
<td>9-10</td>
<td>10</td>
<td>8-10</td>
<td>10</td>
</tr>
<tr>
<td>Additional & Supporting Content</td>
<td>3-4</td>
<td>4</td>
<td>2-4</td>
<td>4</td>
</tr>
<tr>
<td>Expressing Mathematical Reasoning</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Modeling & Application</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL Operational</td>
<td>15</td>
<td>21</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Total Embedded Field-Test</td>
<td>2-3</td>
<td>N/A</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Session Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The test will contain additional field-test tasks. The field-test tasks do not count towards a student’s final score on the test; they provide information that will be used to help develop future test forms. Session 2 test time has been increased to allow for an embedded field test constructed-response task.
The following table includes information on the total tasks, total points, and percentage of assessment points by task-type point-values.

<table>
<thead>
<tr>
<th>Task Types</th>
<th>Point-Values</th>
<th>Total Tasks</th>
<th>Total Points</th>
<th>Percentage of Assessment Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>1-point tasks</td>
<td>34</td>
<td>34</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td>2-point tasks</td>
<td>3</td>
<td>6</td>
<td>9.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>3-point tasks</td>
<td>2</td>
<td>6</td>
<td>9.5%</td>
</tr>
<tr>
<td></td>
<td>4-point tasks</td>
<td>1</td>
<td>4</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type III</td>
<td>3-point tasks</td>
<td>2</td>
<td>6</td>
<td>9.5%</td>
</tr>
<tr>
<td></td>
<td>6-point tasks</td>
<td>1</td>
<td>6</td>
<td>9.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>43</td>
<td>62</td>
<td>100%</td>
</tr>
</tbody>
</table>

TEST ADMINISTRATION

Administration Schedule

All LEAP 2025 tests are computer-based (CBT), but districts may choose to administer paper-based tests (PBT) for grade 4. School systems have until October 31, 2018 to choose CBT or PBT. The computer-based testing window opens April 1, 2019 and runs through May 3, 2019. Your school or district test coordinator will communicate your school’s testing schedule. All LEAP 2025 tests are timed. No additional time is permitted, except for students who have a documented extended time accommodation (e.g., an IEP).

Scheduling Requirements for Computer-Based Testing

Computer-based testing allows districts some flexibility in scheduling. However, to reduce incidences of testing irregularities, districts must adhere to the following scheduling and administration practices:

- Testing students in the same grade level across the school at or very close to the same time
- Completing makeup testing for students immediately upon their return
- Limiting student interaction during breaks between test sessions
- Isolating students who have not completed testing for the day (e.g., students with extended time accommodation)
- Preventing interaction between groups of students taking the same tests at different times within a testing day
- Requiring the completion of a session once it is opened (i.e., limiting the reopening of test sessions)
- Taking the sessions within a content area in the correct order (e.g., ELA Session 1 taken before ELA Session 2)

We also recommend:

- limiting sessions to no more than three in one day for a student; and
- administering no more than one session that includes an extended-response task or writing prompt (i.e., ELA Session 1, and ELA Session 2) in a day to an individual student.

For more information about the scheduling of the CBT and online administration policies, refer to the Computer-Based Test Scheduling Guidance document, found in the LDOE Assessment library.
The table below shows the PBT schedule for grade 4.

<table>
<thead>
<tr>
<th>Day</th>
<th>Session 1:</th>
<th>Session 2:</th>
<th>Session 3:</th>
<th>Session 4:</th>
<th>Session 5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>Literary Analysis Task and a passage set with one text OR Research Simulation Task</td>
<td>90 minutes</td>
<td>Mathematics Session 1</td>
<td>75 minutes</td>
<td></td>
</tr>
<tr>
<td>April 29</td>
<td></td>
<td></td>
<td>75 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>Research Simulation Task OR Narrative Writing Task and a passage set with one text or a pair of related texts</td>
<td>90 minutes</td>
<td>Mathematics Session 2</td>
<td>85 minutes</td>
<td></td>
</tr>
<tr>
<td>April 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>English Language Arts Session 3: Reading Literary and Informational Texts</td>
<td>60 minutes</td>
<td>Mathematics Session 3</td>
<td>75 minutes</td>
<td></td>
</tr>
<tr>
<td>May 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td>Science Session 1: Item Sets and Standalone Items</td>
<td>75 minutes</td>
<td>Science Session 2: Item Set and Task Set</td>
<td>70 minutes</td>
<td></td>
</tr>
<tr>
<td>May 2</td>
<td>Science Session 3: Item Sets and Standalone Items</td>
<td></td>
<td></td>
<td>70 minutes</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>Social Studies Session 1: Item Sets and Standalone Items</td>
<td>75 minutes</td>
<td>Social Studies Session 2: Item Sets and Standalone Items</td>
<td>75 minutes</td>
<td></td>
</tr>
<tr>
<td>May 3</td>
<td>Social Studies Session 2: Item Sets and Standalone Items</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Permitted Testing Materials

The chart shown summarizes the tools and resources for the grade 4 mathematics assessment.

<table>
<thead>
<tr>
<th>Provided (by vendor or part of online system)</th>
<th>Required (provided by school)</th>
<th>Other Allowable (may be used, not required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1 eighth-inch and centimeter ruler</td>
<td>• scratch paper (lined, graph, or un-lined)</td>
<td>• yellow highlighter</td>
</tr>
<tr>
<td>• protractor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provided tools are sent by the test vendor to the districts for the districts to distribute during testing; districts and students may not substitute their own tools for provided tools. Required tools must be supplied by the school and distributed to all testers during testing. Schools may provide or permit students to bring allowable tools. If schools permit students to bring their own allowable tools, tools must be given to the test administrator prior to testing to ensure that the tools are appropriate for testing (e.g., tools do not have any writing on them).
Calculated Policy

Students are not allowed to use calculators during the administration of any mathematics test in grades three through five. For students with the approved accommodation for calculator use, a four-function calculator must be provided for all sessions.

- Square root, percent, memory, and +/- keys are also allowed, but not required.
- An online calculator (shown) will be available for all sessions, but a hand-held calculator is allowed.
- If a student needs an adaptive calculator (e.g., large key, talking), the student may bring his or her own or the school may provide one, as long as it is specified in his or her approved IEP or IAP.
- Calculators with the following features are not permitted:
 - Computer Algebra System (CAS) features
 - “QWERTY” keyboards
 - paper tape
 - talk or make noise, unless specified in IEP/IAP
 - tablet, laptop (or PDA), phone-based, or wristwatch
- Students are not allowed to share calculators within a testing session.
- Test administrators must confirm that memory on all calculators has been cleared before and after the testing sessions.
- The student should use the calculator they have used regularly throughout the school year in their classroom and are most familiar with, provided their regular-use calculator is not outside the boundaries of what is allowed, as detailed above.
- If schools or school systems permit students to bring their own hand-held calculators, test administrators must confirm that the calculators meet all the requirements as defined above.

Reference Sheet

Students in grade 4 will not have a reference sheet because the LSSM for this grade do not require one.

Requisite Knowledge

Students in grade 4 will be required to know relative sizes of measurement units within one system of units. Therefore, the requisite knowledge listed is necessary in grade 4 and will not be provided in a reference sheet.

- 1 meter = 100 centimeters
- 1 kilometer = 1000 meters
- 1 kilogram = 1000 grams
- 1 liter = 1000 milliliters
- 1 foot = 12 inches
- 1 pound = 16 ounces
- 1 minute = 60 seconds
- 1 hour = 60 minutes
- Area formula for rectangles
- Perimeter formula for rectangles
Computer-Based Tests

Students taking the computer-based tests will enter their answers into the online testing system. The way each answer is entered depends on the task type. The computer-based tests include the following online tools, which allow a student to select answer choices, “mark” tasks, eliminate answer options, take notes, enlarge the task, guide the reading of a task line by line, use a ruler or protractor, and use an equation builder for entering special characters. A help tool is also featured to assist students as they use the online system.

- Pointer tool
- Highlighter tool
- Cross-Off tool
- Sticky Note tool
- Magnifying tool
- Line Guide
- Measurement tools
- Equation Builder
- Help tool

All students taking the computer-based tests should work through the Online Tools Training, available in INSIGHT or here using the Chrome browser, to practice using the online tools so they are well prepared to navigate the online testing system.

Grade 4 rulers and protractor provided on the LEAP 2025 CBT (not actual size):

To ensure accurate measurement, the size of the computer-based ruler and protractor, along with the object being measured, varies depending on the computer monitor’s resolution. To practice with the computer-based ruler and protractor, visit the Online Tools Training, available in INSIGHT or here using the Chrome browser.
Item Types
All of the following item types will appear on both the PBT and CBT, with the exception of technology-enhanced.

- **Multiple-Choice (MC)** – This item type asks students to choose one correct answer and may appear as a one-part question, as part of a two-part question, or as a part of a CR item. The MC items are worth one point.

- **Multiple-Select (MS)** – This item type asks students to choose **more than one** correct answer and may appear as a one-part question, as part of a two-part question, or as a part of a CR item. Whenever this item type is used, the question **always identifies** in boldface print the number of correct answers required. The MS items are worth one point. Students must choose **all correct answers and no incorrect answer** must be chosen to receive credit.

- **Short Answer (SA)** – This item type asks students to key numeric answers into an entry box using the keyboard and may appear as a one-part question, as part of a two-part question, or as a part of a CR item. The SA items are worth one point. Unless specified in the question, a student will earn credit for an answer that is equivalent to the correct numerical answer. Answers to SA items must be entered as whole numbers or in decimal form.

- **Technology-Enhanced (TE)** – This item type appears only on the CBT and uses technology to capture student responses. TE items may appear as a one-part question, as part of a two-part question, or as a part of a CR item. The TE items are worth one point. The Online Tools Training (OTT) allows students to practice answering the TE questions to prepare for the CBT. For a summary of the different kinds of TE items and where to find examples, refer to [LEAP 2025 Technology-Enhanced Item Types](#).

- **Constructed Response (CR)** – This item type can be a single- or multi-part item. CR items ask students to create a written explanation or justification, model a process, and/or compute an answer to earn a series of points. A student may receive partial or full credit on CR items and maximum point values will vary by CR task. Maximum values for CR items are 3, 4, or 6 points. When responding to a [computer-based CR item](#), students will type their responses into a response box, like the one shown below.

![Response Box](image)

Response Box
The response box allows students to use the keyboard to type in their response or work. There is a limit to the number of characters that can be typed into the response box; however, it is set will beyond what a student might produce based on grade-specific expectations of the item. The toolbar at the top of the response box has the Equation Builder tool that allows the students to create a response with commonly-used grade-specific math symbols.
Equation Builder
Students are not required to use the equation builder for any symbols which are available on the keyboard. For example, students may use a slash, forward / or back \, to represent a fraction, a carat ^ to represent exponents, or a dash – to represent subtraction. The degree ° and cents ¢ symbols are not available on the keyboard, but students may type the words “degrees” and “cents” as necessary.

The Equation Builder does not include all symbols/characters students might need to type into the open response box. Students should know how to type a question mark ? and a colon : using the keyboard.

Using the Equation Builder
- To enter text, click pointer in the Response Box and type text using the keyboard.
- Click on the Equation Builder button to open the tool and enter any math symbols, characters, or math format.
- When finished, click on the OK button in the lower-right corner of the Equation Builder tool – the equation will be entered into the response box.
- To cancel what you have entered, click on the Cancel button in the lower-right corner of the Equation Builder tool and you will be returned to the response box.
- To edit an existing equation, double-click on the equation in the Response Box. This will re-open the Equation Builder.

Paper-Based Tests
Students taking the paper-based tests will enter all answers in their test booklets. There will be no separate answer documents. Instructions for how to manage the test booklets, including how to break the seals, will be outlined in the Test Administration Manual.

Entering Responses in the PBT Booklet
Multiple-choice (MC) tasks for grade 4 have three or four options. Students will shade the bubble of the one correct answer.

(A) Option A
(B) Option B
(C) Option C
(D) Option D

Multiple-select (MS) tasks for grade 4 have five or six options. Students will fill in the number of correct answers identified in the stem of the question. The number of correct answers will vary from task to task. The sample below asks for two correct answers.

(A) Option A
(B) Option B
(C) Option C
(D) Option D
(E) Option E
(F) Option F
Short Answer (SA) tasks on paper-based tests have grids for students to write the answer. Each digit of a number (whole number or decimal) is written in the boxes at the top of the grid, starting with the first box on the left. Numbers are entered without commas. Students will then shade the bubble in the column that corresponds to the entry (digit) in the top row. Blank spaces within the answer are not allowed.

Fractional Answers
Type I tasks with potential fractional answers in PBT forms will be presented in multiple-choice or multiple-select formats. Students are expected to be able to correctly write and apply fractions in Type II and Type III constructed-response tasks.

General Guidelines
When answering Type II and Type III tasks, students need to make sure to write their explanations and/or to show their work in the box provided for each question. Any information written outside the box or which has been scratched out will not be scored. The following information presents guidelines for marking/writing in the mathematics test booklet.

- Students may use yellow highlighters to highlight text in the test booklet.
- Students may write and do scratch work in the test booklet, but must avoid making stray marks in the answer circles on the multiple-choice and multiple-select tasks or in the short answer grids.
- Highlighting text in options and placing an X to the right of the text in an option are recommended ways for students to eliminate options. However, crossing out options could create scoring issues if students mark through answer circles.

Grade 4 ruler and protractor provided on the LEAP 2025 PBT (not actual size):

Note: Should a student mistakenly start in a column other than column 1, the entry will be scored as correct under the following conditions:
- The entry is mathematically correct.
- There are no spaces within the answer.
- The answer fits within the remaining columns.
Multiple-Choice/Multiple-Select Type I Task

Part A
A plant grew $\frac{3}{10}$ meter in April and $\frac{27}{100}$ meter in May. Which expression can be used to find the total amount the plant grew during the two months?

- (a) $\frac{3}{10} + \frac{27}{100}$
- (b) $\frac{1}{10} + \frac{27}{10}$
- (c) $\frac{3}{100} + \frac{27}{100}$
- (d) $\frac{10}{10} + \frac{27}{10}$

Part B
A plant grew $\frac{3}{10}$ meter in April and $\frac{27}{100}$ meter in May. In June, the plant grew another $\frac{13}{100}$ meter. What fraction of a meter did the plant grow during the three months? Select the two correct answers.

- (a) $\frac{7}{10}$
- (b) $\frac{40}{10}$
- (c) $\frac{70}{10}$
- (d) $\frac{4}{10}$
- (e) $\frac{40}{10}$
- (f) $\frac{70}{10}$
Short Answer Task
An airplane flew 1,155 miles on its first trip and 1,995 miles on its second trip.

What is the total number of miles the airplane flew on these two trips?

Enter your answer in the box.

TEI: Match Interaction / Dropdown Menu Type I Task

Part A

The table shows the lengths of five different animals in a zoo.
For each animal, select a place in the table to show whether it is less than or greater than $\frac{5}{10}$ meter in length.

Select one cell per row.

<table>
<thead>
<tr>
<th>Animal</th>
<th>Length (in meters)</th>
<th>Less than $\frac{5}{10}$ meter</th>
<th>Greater than $\frac{5}{10}$ meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Jay</td>
<td>25/100</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Cotton-tailed rabbit</td>
<td>4/10</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Raccoon</td>
<td>8/10</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Snowy owl</td>
<td>67/100</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Thread snake</td>
<td>11/100</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

TEI: Drag-and-Drop Task
Miko is 3 years old. His Uncle Joe is 7 times as old as Miko.

Use the numbers and symbols to find Uncle Joe’s age.

Drag and drop the numbers and symbols into each correct box.

Part B

Use the lengths in the table to compare the lengths of the animals.
Select from the drop-down menus to correctly complete each comparison.

- blue jay [] cotton-tailed rabbit [>]
- raccoon [>] snowy owl [<]
- thread snake [=] blue jay [>]
- [<] [>] [>]
- [>] [=] [<]
Type III Constructed-Response Task

The table shows the number of yards Ed ran in each of the first three football games of the season.

<table>
<thead>
<tr>
<th>Game</th>
<th>Yards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>157</td>
</tr>
<tr>
<td>2</td>
<td>309</td>
</tr>
<tr>
<td>3</td>
<td>172</td>
</tr>
</tbody>
</table>

After the first three games of the season, Rico had exactly 3 times the total number of running yards that Ed had.

How many **more** total running yards did Rico have than Ed after the first three games of the season? Show your work using equations.

Enter your answer and your work or explanation in the box provided.

Sample Paper-based Test Items

Multiple-Choice/Multiple-Select Type I Task

Part A

A plant grew \(\frac{3}{10}\) meter in April and \(\frac{27}{100}\) meter in May. Which expression can be used to find the total amount the plant grew during the two months?

\[\begin{align*}
\text{(A) } & \quad \frac{3}{10} + \frac{27}{10} \\
\text{(B) } & \quad \frac{3}{10} + \frac{27}{100} \\
\text{(C) } & \quad \frac{30}{100} + \frac{27}{100} \\
\end{align*}\]
Part B

A plant grew $\frac{3}{10}$ meter in April and $\frac{27}{100}$ meter in May. In June, the plant grew another $\frac{13}{100}$ meter. Which fractions are equivalent to the fraction of a meter the plant grew during the three months?

Select the two correct answers.

A $\frac{7}{10}$

B $\frac{4}{10}$

C $\frac{70}{10}$

D $\frac{40}{100}$

E $\frac{70}{100}$

Fill-in-the-Blank Task

An airplane flew 1,155 miles on its first trip and 1,695 miles on its second trip. What is the total number of miles the airplane flew on these two trips? Enter your answer in the box.
Jian's family sells honey from beehives. They collected 3,311 ounces of honey from the beehives this season. They will use the honey to completely fill 4-ounce jars or 6-ounce jars.

Jian's family will sell 4-ounce jars for $5 each or 6-ounce jars for $8 each.

Jian says if they use only 4-ounce jars, they could make $4,140 because $3,311 \div 4 = 827$ R 3. That rounds up to 828, and 828 multiplied by 5 is $4,140$.

Part A

Explain the error that Jian made when finding the amount of money his family could make if they use only 4-ounce jars.

Enter your explanation in the box provided.

Part B

Explain how to determine the money Jian's family could make if they use only 6-ounce jars. Include the total amount of money and the total number of 6-ounce jars in your explanation.

Enter your answers and your explanation in the box provided.
RESOURCES

Assessment Guidance Library
- LEAP 2025 Equation Builder for Grades 3-5: provides teachers with information on using the equation builder; Spanish
- Assessment Development Educator Review Committees: describes the item development process and associated committees, includes information on applying for participation

Practice Test Library
- LEAP 2025 Grade 4 Math PBT Practice Test and Answer Key: helps students prepare for the tests and includes answer keys, scoring rubrics, and alignment information; Spanish version (test, key)
- LEAP 2025 Grade 4 Math CBT Practice Test and Answer Key: includes answer keys, scoring rubrics, and alignment information; Spanish
- LEAP 2025 Math Practice Test Guidance: provides guidance on using the math practice tests to support instructional goals
- Practice Test Quick Start Guide: provides information regarding administration and scoring of the online practice tests

eDIRECT
- includes access to tutorials, manuals, and user guides
- EAGLE: part of the LEAP 360 system which allows teachers to integrate high-quality questions into daily lessons through teacher-created tests, premade assessments, and items for small group instruction

Assessment Library
- LEAP 2025 Accessibility and Accommodations Manual: provides information about accessibility features and accommodations
- LEAP 2025 Technology Enhanced Item Types: provides a summary of technology enhanced items
- Achievement Level Descriptors: descriptions of the knowledge, skills, and cognitive processes that students should demonstrate with relative consistency and accuracy at each level of achievement
- LEAP 360: non-summative assessment system; includes diagnostic and interim assessments

INSIGHT™
- Online Tools Training: allows students to become familiar with the online testing platform; also available here using the Chrome browser
- LEAP 2025 Grade 4 CBT Practice Test: helps prepare students for tests

Fourth Grade Teacher Library
- K-12 Louisiana Student Standards for Math: explains the development of and lists the math content standards for Louisiana students
- Grade 4 Math - Teachers Companion Document 2.0: contains descriptions of each standard to answer questions about the standard’s meaning and how it applies to student knowledge and performance
- Grade 4 Remediation Guide: identifies remedial standards, includes information on content emphasis
- K-12 LSSM Alignment to Rigor: provides explanations and a standards-based alignment to assist teachers in providing a rigorous education

Contact Us
- AskLDOE electronic ticket system
- assessment@la.gov for assessment questions
- classroomsupporttoolbox@la.gov for curriculum and instruction questions

Newsroom: offers archive copies of newsletters including the LDOE Weekly School System Newsletter and the Teacher Leader Newsletter
APPENDIX A

Assessable Content for the Major Content Reporting Category (Type I)

<table>
<thead>
<tr>
<th>LSSM Content Standards</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.OA.A</td>
<td>Use the four operations with whole numbers to solve problems.</td>
</tr>
<tr>
<td>4.OA.A.1</td>
<td>Interpret a multiplication equation as a comparison and represent verbal statements of multiplicative comparisons as multiplication equations, e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7, and 7 times as many as 5.</td>
</tr>
<tr>
<td>4.OA.A.2</td>
<td>Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and/or equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison (Example: 6 times as many vs. 6 more than).</td>
</tr>
<tr>
<td>4.OA.A.3</td>
<td>Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. Example: Twenty-five people are going to the movies. Four people fit in each car. How many cars are needed to get all 25 people to the theater at the same time?</td>
</tr>
<tr>
<td>4.NBT.A</td>
<td>Generalize place value understanding for multi-digit whole numbers.</td>
</tr>
<tr>
<td>4.NBT.A.1</td>
<td>Recognize that in a multi-digit whole number less than or equal to 1,000,000, a digit in one place represents ten times what it represents in the place to its right. For example, (1) recognize that $700 \div 70 = 10$; (2) in the number 7,246, the 2 represents 200, but in the number 7,426 the 2 represents 20, recognizing that 200 is ten times as large as 20, by applying concepts of place value and division.</td>
</tr>
<tr>
<td>4.NBT.A.2</td>
<td>Read and write multi-digit whole numbers less than or equal to 1,000,000 using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons.</td>
</tr>
<tr>
<td>4.NBT.A.3</td>
<td>Use place value understanding to round multi-digit whole numbers, less than or equal to 1,000,000, to any place.</td>
</tr>
<tr>
<td>4.NBT.B</td>
<td>Use place value understanding and properties of operations to perform multi-digit arithmetic.</td>
</tr>
<tr>
<td>4.NBT.B.4</td>
<td>Fluently add and subtract multi-digit whole numbers with sums less than or equal to 1,000,000, using the standard algorithm.</td>
</tr>
<tr>
<td>4.NBT.B.5</td>
<td>Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.</td>
</tr>
<tr>
<td>4.NBT.B.6</td>
<td>Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.</td>
</tr>
<tr>
<td>4.NF.A</td>
<td>Extend understanding of fraction equivalence and ordering.</td>
</tr>
</tbody>
</table>

1. See [LSSM](#) Table 2, p. 61.
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.NF.A.1</td>
<td>Explain why a fraction (\frac{a}{b}) is equivalent to a fraction ((n \times a)/(n \times b)) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. (Denominators are limited to 2, 3, 4, 5, 6, 8, 10, 12, and 100.)</td>
</tr>
<tr>
<td>4.NF.A.2</td>
<td>Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. (Denominators are limited to 2, 3, 4, 5, 6, 8, 10, 12, and 100.)</td>
</tr>
</tbody>
</table>
| 4.NF.B.3 | Understand a fraction \(\frac{a}{b}\) with \(a > 1\) as a sum of fractions \(\frac{1}{b}\). (Denominators are limited to 2, 3, 4, 5, 6, 8, 10, 12, and 100.)

 a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. Example: \(3/4 = 1/4 + 1/4 + 1/4\).

 b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: \(3/8 = 1/8 + 1/8 + 1/8\); \(3/8 = 1/8 + 2/8\); \(2 1/8 = 1 + 1 + 1/8 + 1/8\).

 c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.

 d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem. |
| 4.NF.B.4 | Multiply a fraction by a whole number. (Denominators are limited to 2, 3, 4, 5, 6, 8, 10, 12, and 100.)

 a. Understand a fraction \(a/b\) as a multiple of \(1/b\). For example, use a visual fraction model to represent \(5/4\) as the product \(5 \times (1/4)\), recording the conclusion by the equation \(5/4 = 5 \times (1/4)\).

 b. Understand a multiple of \(a/b\) as a multiple of \(1/b\), and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express \(3 \times (2/5)\) as \(6 \times (1/5)\), recognizing this product as \(6/5\). (In general, \(n \times (a/b) = (n \times a)/b\).)

 c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat \(3/8\) of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie? |
| 4.NF.C.5 | Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. For example, express \(3/10\) as \(30/100\), and add \(3/10 + 4/100 = 34/100\). |
| 4.NF.C.6 | Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram; represent 62/100 of a dollar as $0.62. |

2 Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.
4.NF.C.7

Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions, e.g., by using a visual model.

LEAP 2025 Evidence Statements

| LEAP.I.4.1 | Apply conceptual understanding of fraction equivalence and ordering to solve simple word problems requiring fraction comparison. Content Scope: Knowledge and skills articulated in
| 4.NF.A – Tasks have “thin context.” Tasks do not require adding, subtracting, multiplying, or dividing fractions. Prompts do not provide visual fraction models; students may at their discretion draw visual fraction models as a strategy. Fractions equal to whole numbers are limited to 0 – 5. |
| LEAP.I.4.2 | Solve one-step word problems involving multiplying two two-digit numbers. Content Scope: Knowledge and skills articulated in
| 4.NBT.B.5, 4.OA.A – The given numbers are such as to require a general strategy based on place value and the properties of operations (e.g., 63×44). Word problems shall include a variety of grade-level appropriate applications and contexts. |
| LEAP.I.4.3 | Solve one-step word problems involving multiplying a four-digit number by a one-digit number. Content Scope: Knowledge and skills articulated in
| 4.NBT.B.5, 4.OA.A – The given numbers are such as to require a general strategy based on place value and the properties of operations (e.g., 2392×8). Word problems shall include a variety of grade-level appropriate applications and contexts. |
| LEAP.I.4.4 | Solve one-step word problems involving dividing a four-digit number by a one-digit number. Content Scope: Knowledge and skills articulated in
| 4.NBT.B.6, 4.OA.A – The given numbers are such as to require a general strategy based on place value and the properties of operations (e.g., $2328 \div 8$). Quotients are whole numbers. Word problems shall include a variety of grade-level appropriate applications and contexts. |
| LEAP.I.4.5 | Solve multi-step\(^3\) word problems posed with whole numbers and involving computations best performed by applying conceptual understanding of place value, perhaps involving rounding. Content Scope: Knowledge and skills articulated in
| 4.OA.A.3, 4.NBT – Tasks must be aligned to 4.OA.A.3 and 1 or more of the subsequent standards listed in the content scope. |
| LEAP.I.4.6 | Solve real-world and mathematical problems about perimeter involving grade-level addition and subtraction of fractions, such as finding an unknown side of a rectangle. Content Scope: Knowledge and skills articulated in
| 4.NF.B.3, 4.MD.A.3 – Tasks must be aligned to both standards listed in the content scope. |
| LEAP.I.4.7 | Solve one-step word problems involving adding or subtracting two four-digit numbers. Content Scope: Knowledge and skills articulated in
| 4.NBT.B.4, 4.OA.A – The given numbers are such as to require an efficient/standard algorithm (e.g., $7263 + 4875$, $7263 - 4875$, $7406 - 4637$) and do not suggest any obvious ad hoc or mental strategy (e.g., $6,999 + 3,501$ or $7300 - 6301$). Word problems shall include a variety of grade-level appropriate applications and contexts. |

\(^3\) Multi-step must have at least 3 steps.
LEAP.I.4.8
Solve addition and subtraction word problems involving three four-digit addends, or two four-digit addends and a four-digit subtrahend.

Content Scope: Knowledge and skills articulated in
- 4.NBT.B.4, 4.OA.A – The given numbers are such as to require an efficient/standard algorithm (e.g., 7263 + 4875 + 6901) and do not suggest any obvious ad hoc or mental strategy (e.g., 6,999 + 3,501 - 5,000).

Assessable Content for the Additional & Supporting Content Reporting Category (Type I)

<table>
<thead>
<tr>
<th>LSSM Content Standards</th>
<th>Assessable Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.OA.B</td>
<td>Gain familiarity with factors and multiples.</td>
</tr>
</tbody>
</table>
| 4.OA.B.4 | Using whole numbers in the range 1–100,
 a. Find all factor pairs for a whole number in the range 1-100.
 b. Recognize that a whole number is a multiple of each of its factors.
 c. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number.
 d. Determine whether a given whole number in the range 1-100 is prime or composite. |
| 4.OA.C | Generate and analyze patterns. |
| 4.OA.C.5 | Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule “Add 3” and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. |
| 4.MD.A | Solve problems involving measurement and conversion of measurements. |
| 4.MD.A.1 | Know relative sizes of measurement units within one system of units including ft, in; km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. (Conversions are limited to one-step conversions.) For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... |
| 4.MD.A.2 | Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving whole numbers and/or simple fractions (addition and subtraction of fractions with like denominators and multiplying a fraction times a fraction or a whole number), and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. |
| 4.MD.A.3 | Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. |
| 4.MD.B | Represent and interpret data. |

4 Students in Grade 4 will be assessed on multiplying a fraction and a whole number as indicated in the NF domain. Some students may be able to multiply a fraction by a fraction as a result of generating equivalent fractions; however, mastery of multiplying two fractions occurs in Grade 5.
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.MD.B.4</td>
<td>Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.</td>
</tr>
<tr>
<td>4.MD.C</td>
<td>Geometric measurement: understand concepts of angle and measure angles.</td>
</tr>
</tbody>
</table>
| 4.MD.C.5 | Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:
 a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where two rays intersect the circle.
 b. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles.
 c. An angle that turns through n one-degree angles is said to have an angle measure of n degrees. |
| 4.MD.C.6 | Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. |
| 4.MD.C.7 | Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a letter for the unknown angle measure. |
| 4.MD.D | Relate area to operations of multiplication and addition. |
| 4.MD.D.8 | Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real-world problems. |
| 4.G.A | Draw and identify lines and angles, and classify shapes by properties of their lines and angles. |
| 4.G.A.1 | Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. |
| 4.G.A.2 | Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. |
| 4.G.A.3 | Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry. |
LEAP 2025 Evidence Statements

| LEAP.II.4.1 | Base explanations/reasoning on the properties of operations. Content Scope: Knowledge and skills articulated in
| - 4.NBT.B.5 - Students need not use formal property names. Tasks do not have a context. Unneeded parentheses should not be used.
- 4.NBT.B.6 - Students need not use formal property names. Tasks do not have a context. Unneeded parentheses should not be used. |
| LEAP.II.4.2 | Base explanations/reasoning on the relationship between multiplication and division. Content Scope: Knowledge and skills articulated in
| - 4.NBT.B.6 – Tasks do not have a context. |
| LEAP.II.4.3 | Reason about the place value system itself. Content Scope: Knowledge and skills articulated in
| - 4.NBT.A – Tasks have “thin context” or no context. |
| LEAP.II.4.4 | Base arithmetic explanations/reasoning on concrete referents such as diagrams (whether provided in the prompt or constructed by the student in her response), connecting the diagrams to a written (symbolic) method. Content Scope: Knowledge and skills articulated in
| - 4.NF.A - Tasks have “thin context” or no context.
- 4.NF.B.3a, 4.NF.B.3b - Tasks have “thin context” or no context. Fractions equal to whole numbers are limited to 0 – 5.
- 4.NF.B.4a - Tasks have “thin context” or no context. Fractions equal to whole numbers are limited to 0 – 5.
- 4.NF.B.4b - Tasks have “thin context” or no context.
- 4.NF.C - Tasks have “thin context” or no context. |
| LEAP.II.4.5 | Distinguish correct explanation/reasoning from that which is flawed, and – if there is a flaw in the argument – present corrected reasoning. (For example, some flawed ‘student’ reasoning is presented and the task is to correct and improve it.) Content Scope: Knowledge and skills articulated in
| - 4.OA.A.3 – Reasoning in these tasks centers on interpretation of remainders.
- 4.NF.A.1 - Tasks have “thin context” or no context. Fractions equal to whole numbers are limited to 0 – 5.
- 4.NF.A.2 - Tasks have “thin context” or no context. Fractions equal to whole numbers are limited to 0 – 5.
- 4.NF.B - Results may equal fractions greater than 1 (including fractions equal to whole numbers limited to 0 – 5).
- 4.NF.C - Tasks have “thin context” or no context.
- 3.OA.B, 3.NF, 3.MD.C – Tasks may have scaffolding. |

5 For example, use $4 + 3 \times 2$ rather than $4 + (3 \times 2)$.
6 “Thin context” is a sentence or phrase that establishes a concrete referent for the quantity/quantities in the problem, in such a way as to provide meaningful avenues for mathematical intuition to operate, yet without requiring any sort of further analysis of the context. For example, a task could provide a reason for being given a set of fractional measurements such as, “The fractions represent lengths of ribbon.”
7 Scaffolding in a task provides the student with an entry point into a pathway for solving a problem. In unscaffolded tasks, the student determines his/her own pathway and process.
| LEAP.II.4.6 | Present solutions to multi-step\(^3\) problems in the form of valid chains of reasoning, using symbols such as equals signs appropriately (for example, rubrics award less than full credit for the presence of nonsense statements such as 1 + 4 = 5 + 7 = 12, even if the final answer is correct), or identify or describe errors in solutions to two-step problems and present corrected solutions. Content Scope: Knowledge and skills articulated in
- 4.OA.A.3 - Tasks may involve interpreting remainders.
- 4.NF.B.3c - Tasks have “thin context”\(^6\) or no context. Denominators are limited to grade 3 possibilities (2, 3, 4, 6, 8) so as to keep computational difficulty lower.
- 4.NF.B.3d, 4.NF.B.4c - Denominators are limited to grade 3 possibilities (2, 3, 4, 6, 8) so as to keep computational difficulty lower. |
| LEAP.II.4.7 | Base explanations/reasoning on a number line diagram (whether provided in the prompt or constructed by the student in her response). Content Scope: Knowledge and skills articulated in
- 4.NF.A.1 - Fractions equal to whole numbers are limited to 0 – 5.
- 4.NF.A.2 - Fractions equal to whole numbers are limited to 0 – 5.
- 4.NF.B.3a
- 4.NF.B.4a, 4.NF.B.4b |

Assessable Content for the Modeling & Application Reporting Category (Type III)

<table>
<thead>
<tr>
<th>LEAP 2025 Evidence Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAP.III.4.1</td>
</tr>
<tr>
<td>LEAP.III.4.2</td>
</tr>
</tbody>
</table>
APPENDIX B

Answer Key/Rubrics for Sample Items

<table>
<thead>
<tr>
<th>PBT/CBT</th>
<th>Item Type</th>
<th>Key</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBT/CBT</td>
<td>Multiple-Choice/Multiple-Select Type I</td>
<td>Part A: D</td>
<td>4.NF.C.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part B: A, F</td>
<td></td>
</tr>
<tr>
<td>PBT/CBT</td>
<td>Short Answer</td>
<td>2850</td>
<td>LEAP.I.4.7</td>
</tr>
<tr>
<td>PBT</td>
<td>Type II Constructed- Response</td>
<td>See Rubric</td>
<td>LEAP.II.4.5</td>
</tr>
<tr>
<td>CBT</td>
<td>TEI: Drag-and-Drop</td>
<td></td>
<td>4.OA.A.1</td>
</tr>
</tbody>
</table>

![Image of a problem: 3 x 7 = 21](image-url)
<table>
<thead>
<tr>
<th>PBT/CBT</th>
<th>Item Type</th>
<th>Key</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBT</td>
<td>TEI: Match Interaction / Dropdown Menu Type I</td>
<td></td>
<td>LEAP.I.4.1</td>
</tr>
</tbody>
</table>

Part A:
- Less than $\frac{5}{10}$ meter
- Greater than $\frac{5}{10}$ meter

Part B:
- blue jay $<$ cottontail rabbit
- raccoon $>$ snowy owl
- thread snake $<$ blue jay

See Rubric
Type II Constructed-Response Rubric

PART A

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Reasoning component: The student explains the error made.
Sample Student Response: Jian rounded the quotient up, but that won’t work because the remainder of 3 means there are only 3 ounces of honey left, and that isn’t enough to fill the last jar.
Note: A variety of explanations are possible, as long as the explanation shows a clear understanding of the error made. |
| 0 | Student response is incorrect or irrelevant. |

PART B

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2 | Computation component: 551 (6-ounce) jars and $4,408
Reasoning component: The student explains the steps needed to solve the problem, including correctly interpreting the remainder.
Sample Student Response: Divide 3,311 by 6 and get a quotient of 551, with a remainder of 5. This means they could completely fill 551 jars, but the leftover honey wouldn’t be enough to fill another jar. I multiplied 551 × $8 and got $4,408. |
| 1 | Student response includes 1 of the 2 elements. If a computation mistake is made, credit cannot be given for the computation component, but points can be given for valid reasoning. |
| 0 | Student response is incorrect or irrelevant |

Type III Constructed-Response Rubric

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | Computation component: Rico had 1276 more yards than Ed after the first three games.
Modeling components: Student shows work or explains how to determine the number of yards that Ed had and Rico had after the 3 games and how many more yards Rico had than Ed.
Sample Student Response: I found that Ed had 638 yards by adding 157 + 308 + 172. Rico had 3 times the number of yards as Ed, so 638 × 3 = 1914. To find how many more yards Rico had than Ed, I subtracted 638 from 1914 and got 1276.
Note: A variety of explanations are valid as long as the student uses a mathematically correct approach to solving the problem. |
<p>| 2 | Student response includes 2 of the 3 elements. If a computation mistake is made, credit cannot be given for the computation component, but points can be given for modeling. |
| 1 | Student response includes 1 of the 3 elements. |
| 0 | Student response is incorrect or irrelevant |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Page</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/31/18</td>
<td>1</td>
<td>Added Appendix C to list of internal links</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Added Paper Based Testing Schedule (Table)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Updated Calculator Policy</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Added Achievement Level Descriptors link to Resources page</td>
</tr>
</tbody>
</table>