

K-PS2-1 Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. LC-K-PS2-1a Identify the effect caused by different strengths or directions of pushes and pulls on the motion of an object.

LC-K-PS2-1b Explain the effect of pushes and pulls on the motion of an object.

LC-K-PS2-1c Identify the effect of different strengths and directions of pushes and pulls on the motion of an object.

LC-K-PS2-1d Compare different strengths or different directions of pushes and pulls on an object.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	FORCES AND MOTION	CAUSE AND EFFECT
investigations: Planning and	Pushes and pulls can have different strengths and directions. (LE.PS2A.a)	Simple tests can be
carrying out investigations to		designed to gather
answer questions (science) or test	An object can be pushed or pulled with different strengths.	evidence to support or
solutions (engineering) to problems	An object can be pushed or pulled from different directions.	refute student ideas
in K-2 builds on prior experiences		about causes.
and progresses to simple	Pushing or pulling on an object can change the speed or direction of its motion and can start	
investigations, based on fair tests,	or stop it. (LE.PS2A.b)	Simple tests can be
which provide data to support		designed to gather
explanations or design solutions.	Pushing and pulling an object can change how it moves.	evidence about cause
With guidance, plan and conduct	Pushes and pulls can start or stop the motion of an object.	and effect relationships.
an investigation in collaboration	Pushing or pulling on an object can change its position or motion.	Evidence from simple
with peers.		tests can support ideas
	TYPES OF INTERACTIONS	about causes.
With guidance, plan a simple	When objects touch or collide, they push on one another and can change motion. (LE.PS2B.a)	Evidence from simple
investigation with peers.		tests can refute ideas
With guidance, conduct a simple	A push or pull can be caused by objects touching or colliding.	about causes.
investigation with peers.	When objects touch or collide, the motion of the objects can change.	
	RELATIONSHIP BETWEEN ENERGY AND FORCES	
	A bigger push or pull makes things speed up or slow down more quickly. (LE.PS3C.a)	
	A bigger push or pull can impact an object more than a smaller push or pull.	

Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, or two objects colliding and pushing on each other. Content includes contact forces with different relative strengths or different directions, but not both at the same time.

K-PS2-2 Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.

LC-K-PS2-2a Identify if something designed to push or pull an object makes it move the way it is intended.

LC-K-PS2-2b Identify if something designed to change the speed of an object makes it move the way it is intended.

LC-K-PS2-2c Identify if something designed to change the direction of an object makes it move the way it is intended.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	FORCES AND MOTION	CAUSE AND EFFECT
Analyzing data in K-2 builds on prior	Pushes and pulls can have different strengths and directions. (LE.PS2A.a)	Simple tests can be
experiences and progresses to		designed to gather
collecting, recording, and sharing	An object can be pushed or pulled with different strengths.	evidence to support or
observations.	An object can be pushed or pulled from different directions.	refute student ideas
Analyze data from tests of an		about causes.
object or tool to determine if it	Pushing or pulling on an object can change the speed or direction of its motion and can start	
works as intended.	or stop it. (LE.PS2A.b)	Simple tests can be
		designed to gather
Determine how well the design	Pushing and pulling an object can change how it moves.	evidence about cause
works as intended based on data.	Pushes and pulls can start or stop the motion of an object.	and effect relationships.
	Pushing or pulling on an object can change its position or motion.	Evidence from simple
		tests can support ideas
	ENGINEERING DESIGN	about causes.
	A situation that people want to change or create can be approached as a problem to be	Evidence from simple
	solved through engineering. Such problems may have many acceptable solutions.	tests can refute ideas
	(LE.ETS1A.a)	about causes.
	People can make plans to solve a problem.	
	Tools or objects can be used to solve a simple problem.	
	Engineers use technology to help people solve problems or develop solutions to problems.	
	Engineers design devices or other items to help people solve problems.	

Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, or knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object, a structure that would cause an object such as a marble or ball to turn or using a rope or string to pull an object. Content does not include friction as a mechanism for change in speed.

K-PS3-1 Make observations to determine the effect of sunlight on Earth's surface.

LC-K-PS3-1a Identify examples of sunlight heating different surfaces on Earth.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CONSERVATION OF ENERGY AND ENERGY TRANSFER	CAUSE AND EFFECT
investigations: Planning and	Sunlight warms Earth's surface. (LE.PS3B.a)	Events have causes that
carrying out investigations to		generate observable
answer questions or test solutions	Sunlight feels warm.	patterns.
to problems in K-2 builds on prior	Sunlight warms the surface of the Earth.	
experiences and progresses to	When sunlight hits an object, the light energy can become heat energy.	One event can cause
simple investigations, based on fair		another event to occur.
tests, which provide data to support		Sometimes this
explanations or design solutions.		produces a pattern of
 Make observations (firsthand or 		events.
from media) and/or measurements		
of a proposed object or tool or		
solution to determine if it solves a		
problem or meets a goal.		
Make observations of proposed		
tools or objects to decide if they		
solve a problem.		
Take measurements of proposed		
tools or objects to decide if they		
solve a problem.		
Make observations of a proposed		
solution to decide if it solves a		
problem.		
Take measurements of a proposed		
solution to decide if it solves a		
problem.		

Sunlight heats Earth's natural surfaces including sand, soil, rocks, or water and the unnatural surfaces including man-made objects like plastics, asphalt, or concrete. Examples of observations could be relative changes in temperature of surfaces exposed to sunlight.

K-PS3-2 Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.

LC-K-PS3-2a Identify a design structure (e.g., umbrella, canopy, tent) that will reduce the warming caused by the sun.

LC-K-PS3-2b Identify tools and materials that can be used to build a structure that will reduce the warming effect of sunlight on an area.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	CONSERVATION OF ENERGY AND ENERGY TRANSFER	CAUSE AND EFFECT
designing solutions: Constructing	Sunlight warms Earth's surface. (LE.PS3B.a)	Simple tests can be
explanations (science) and designing		designed to gather
solutions (engineering) in K-2 builds	Sunlight feels warm.	evidence to support or
on prior experiences and progresses	Sunlight warms the surface of the Earth.	refute student ideas
to the use of evidence and ideas in constructing evidence-based	When sunlight hits an object, the light energy can become heat energy.	about causes.
accounts of natural phenomena and		Simple tests can be
designing solutions.		designed to gather
 Use tools and/or materials to 		evidence about cause
design and/or build a device that		and effect relationships.
solves a specific problem or a		Evidence from simple
solution to a specific problem.		tests can support ideas
		about causes.
Tools and materials can be used to		Evidence from simple
design a device that solves a		tests can refute ideas
specific problem.		about causes.
Tools and materials can be used to		
design a device that can be a		
solution to a specific problem.		
Tools and materials can be used to		
build a device that solves a specific problem.		
Tools and materials can be used to		
build a device that can be a solution		
to a specific problem.		

Examples of structures could include umbrellas, canopies, or tents that minimize the warming effect of the sun.

K-LS1-1 Use observations to describe patterns of what plants and animals (including humans) need to survive.

LC-K-LS1-1a Identify that animals need water and food to live and grow.

LC-K-LS1-1b Identify that plants need water and light to live and grow.

LC-K-LS1-1c Identify patterns of what living things need to survive.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	PATTERNS
Analyzing data in K-2 builds on prior	All animals need food in order to live and grow. Animals obtain their food from plants or from	Patterns in the natural
experiences and progresses to	other animals. Plants need water and light to live and grow. (LE.LS1C.a)	and human-designed
collecting, recording, and sharing		world can be observed,
observations.	Plants and animals are living things.	used to describe
 Use observations to describe 	All living things need water, air, and sunlight to survive.	phenomena, and used
patterns and/or relationships in the	Animals need food to live and grow.	as evidence.
natural and designed world(s) in	Animals eat plants or other animals for food.	
order to answer scientific questions	Sunlight and water are essential for plant survival.	Patterns in the world
and solve problems.		(natural and human-
		designed) can be
Observations can be used to		observed.
describe patterns.		Patterns in the world
Observations can be used to		(natural and human-
describe relationships.		designed) can be used
Observations can be used to answer		to describe phenomena.
scientific questions.		Patterns in the world
Observations can be used to solve		(natural and human-
problems.		designed) can be used
		as evidence.

Clarification Statement

Examples of patterns could include that plants make their own food while animals do not, the different kinds of food needed by different types of animals, the requirement of plants to have light, or that all living things need water.

K-ESS2-1 Use and share observations of local weather conditions to describe patterns over time.

LC-K-ESS2-1a Identify patterns in weather conditions using observations of local weather.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	WEATHER AND CLIMATE	PATTERNS
Analyzing data in K-2 builds on prior	Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular	Patterns in the natural
experiences and progresses to collecting, recording, and sharing observations.	region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (LE.ESS2D.a)	and human-designed world can be observed, used to describe
Use observations to describe	Weather can be observed and described (e.g., sunny, cloudy, rainy, warm, or cold).	phenomena, and used
patterns and/or relationships in the natural and designed world(s) in	Weather is a combination of sunlight, wind, snow, or rain, and temperature. Snow is frozen ice crystals that fall from clouds when the temperature is below freezing.	as evidence.
order to answer scientific questions	Rain is water that falls from the clouds when the temperature is above freezing.	Patterns in the world
and solve problems.	Hail and sleet are also forms of frozen precipitation.	(natural and human-
	Weather can be observed, measured, and described through the use of simple tools such as	designed) can be
Observations can be used to	a thermometer, rain gauge, and wind vane.	observed.
describe patterns.	By making observations about what the weather is like, patterns in local weather can be	Patterns in the world
Observations can be used to	observed.	(natural and human-
describe relationships.	Looking at the records of weather over time can help us find patterns.	designed) can be used
Observations can be used to answer	Weather doesn't always follow a pattern.	to describe phenomena.
scientific questions.		Patterns in the world
Observations can be used to solve		(natural and human-
problems.		designed) can be used
		as evidence.

Clarification Statement

Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, or warm); examples of quantitative observations could include numbers of sunny, windy, or rainy days in a month. Examples of patterns could include that it is cooler in the morning than in the afternoon or the number of sunny days versus cloudy days in different months.

K-ESS2-2 Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

LC-K-ESS2-2a Identify examples of how animals change their environments to meet their needs.

LC-K-ESS2-2b Identify examples of how plants change their environments to meet their needs.

LC-K-ESS2-2c Identify ways that humans can affect the environment in which they live.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	BIOGEOLOGY	SYSTEMS AND SYSTEM
evidence: Engaging in argument	Plants and animals can change their environment. (LE.ESS2E.a)	MODELS
from evidence in K-2 builds on prior		Systems in the natural
experiences and progresses to	An interconnectedness exists among the living and nonliving parts of an environment.	and designed world
comparing ideas and	This interconnectedness can be observed by the changes made by plants and animals in	have parts that work
representations about the natural	their environment.	together.
and designed world(s).	Living things can change the places they live to meet their needs.	
Construct an argument with		Systems and system
evidence to support a claim.	HUMAN IMPACTS ON EARTH SYSTEMS	models have many
	Things that people do to live comfortably can affect the world around them; but they can	parts.
A claim must be supported with	make choices that reduce their impacts on the land, water, air, and other living things.	Systems and system
evidence.	(LE.ESS3C.a)	models can be used to
Observational data may be used to		understand the
support claims.	People like to live comfortably.	relationship between
Numerical data may be used to	People can impact the environments that plants and animals live in.	parts that work
support claims.	People can do things that reduce their impacts on the environments that plants and animals	together.
	live in.	

Clarification Statement

Examples of plants and animals changing their environment could include a squirrel digging in the ground to hide its food, tree roots breaking concrete, or a dandelion spreading seeds to generate more dandelions.

K-ESS3-1 Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live. LC-K-ESS3-1a Given a model (e.g., representation, diagram, drawing), describe the relationship between the needs of different animals and the places they live (e.g., deer eat buds and leaves and live in forests).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	NATURAL RESOURCES	SYSTEMS AND SYSTEM
Modeling in K-2 builds on prior	Living things need water, air, and resources from the land, and they live in places that have	MODELS
experiences and progresses to	the things they need. Humans use natural resources for everything they do. (LE.ESS3A.a)	Systems in the natural
include using and developing		and designed world
models (e.g., diagram, drawing,	All living things need water, air, sunlight, and resources from the land to survive.	have parts that work
physical replica, diorama,	Living things live where they have access to the things they need.	together.
dramatization, or storyboard) that	Humans need resources from the land.	
represent concrete events or design		Systems and system
solutions.		models have many
 Develop and/or use a model to 		parts.
represent amounts, relationships,		Systems and system
relative scales (bigger, smaller),		models can be used to
and/or patterns in the natural and		understand the
designed world(s).		relationship between
		parts that work
Models can be used to show		together.
relationships in the world (natural		
and human-designed).		
Models can be used to show		
different amounts or scales (bigger,		
smaller) in the world (natural and		
human- designed).		
Models can be used to show		
patterns in the world (natural and		
human-designed).		

Examples of relationships could include that deer eat buds and leaves and therefore usually live in forested areas; grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.

K-ESS3-2 Ask questions to obtain information about the purpose of weather forecasting to prepare for and respond to severe weather. LC-K-ESS3-2a Identify how weather forecasting can help people avoid the most serious impacts of severe weather events.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	NATURAL HAZARDS	CAUSE AND EFFECT
problems: Asking questions	Some kinds of severe weather are more likely than others in a given region. Weather	Events have causes that
(science) and defining problems	scientists forecast severe weather so that the communities can prepare for and respond to	generate observable
(engineering) in K-2 builds on prior	these events. (LE.ESS3B.a)	patterns.
experiences and progresses to		
simple descriptive questions that	Weather influences plants, animals, and human activity.	One event can cause
can be tested.	Certain kinds of severe weather are more likely than others in some places.	another event to occur.
 Ask questions based on 	Severe weather includes hurricanes, tornados, and blizzards.	Sometimes this
observations to find more	Severe weather often has consequences for people.	produces a pattern of
information about the natural	Heavy rains can also have consequences (flooding).	events.
and/or designed world(s).	Weather forecasting helps keep people safe.	
	Predicting weather can help people better prepare.	
Making observations of the world		
(natural and human-designed)		
leads to asking questions about		
why patterns exist.		

Clarification Statement

Emphasis is on local forms of severe weather and safety precautions associated with that severe weather.

K-ESS3-3 Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment. LC-K-ESS3-3a Identify different solutions that people can apply to the way they live to reduce the impact on the land, water, air, and other living things.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	HUMAN IMPACTS ON EARTH SYSTEMS	CAUSE AND EFFECT
communicating information:	Things that people do to live comfortably can affect the world around them. But they can	Events have causes that
Obtaining, evaluating, and	make choices that reduce their impacts on the land, water, air, and other living things.	generate observable
communicating information in K-2	(LE.ESS3C.a)	patterns.
builds on prior experiences and uses		
observations and texts to	People like to live comfortably.	One event can cause
communicate new information.	People can impact the environments that plants and animals live in.	another event to occur.
Communicate information or	People can do things that reduce their impacts on the environments that plants and animals	Sometimes this
design ideas and/or solutions with	live in.	produces a pattern of
others in oral and/or written forms		events.
using models, drawings, writing, or	DEVELOPING POSSIBLE SOLUTIONS	
numbers that provide detail about	Designs can be conveyed through sketches, drawings, or physical models. These	
scientific ideas, practices, and/or	representations are useful in communicating ideas for a problem's solution(s) to other	
design ideas.	people. (LE.ETS1B.a)	
Share information with others in	Design solutions can be shared with others as sketches or drawings.	
oral or written forms.	Design solutions can be shared with others as models.	
Share information with others using models.	It is important to communicate information about solutions with others.	
Share information with others using		
numbers.		
Share information that provides		
details about scientific ideas or		
practices.		
Share information that provides		
details about design ideas.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Share design ideas with others in		
oral or written forms.		
Share design ideas with others		
using models.		
Share design ideas with others		
using numbers.		
Share design ideas that provide		
details about scientific ideas or		
practices.		
Share solutions with others in oral		
or written forms.		
Share solutions with others using		
models.		
Share solutions with others using		
numbers.		
Share solutions that provide details		
about scientific ideas or practices.		
Share solutions that provide details		
about design ideas.		

Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.

1-PS4-1 Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.

LC-1-PS4-1a Through collaborative investigations, recognize that sounds can cause materials to vibrate.

LC-1-PS4-1b Through collaborative investigations, recognize that vibrating materials can make sound.

LC-1-PS4-1c Use evidence to describe that vibrating materials can make sound.

LC-1-PS4-1d Use evidence to describe that sound can make matter vibrate.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	WAVE PROPERTIES	CAUSE AND EFFECT
investigations: Planning and	Sound can make matter vibrate, and vibrating matter can make sound. (LE.PS4A.a)	Simple tests can be
carrying out investigations to		designed to gather
answer questions (science) or test	Sound can make materials vibrate.	evidence to support or
solutions (engineering) to problems	When materials vibrate, they can make a sound.	refute student ideas
in K-2 builds on prior experiences		about causes.
and progresses to simple		
investigations, based on fair tests,		Simple tests can be
which provide data to support		designed to gather
explanations or design solutions.		evidence about cause
 Plan and conduct investigations 		and effect relationships.
collaboratively to produce data to		Evidence from simple
serve as the basis for evidence to		tests can support ideas
answer a question.		about causes.
		Evidence from simple
Plan investigations collaboratively		tests can refute ideas
to produce data to answer a		about causes.
question.		
Conduct investigations		
collaboratively to produce data to		
answer a question.		

Examples of vibrating materials that make sound could include tuning forks or plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound or holding an object near a vibrating tuning fork.

1-PS4-2 Make observations to construct an evidence-based account that objects can be seen only when illuminated.

LC-1-PS4-2a Through observations, recognize that objects can be seen only when illuminated by an external light source or when they give off their own light.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ELECTROMAGNETIC RADIATION	CAUSE AND EFFECT
designing solutions: Constructing	Objects can be seen if light is available to illuminate them or if they give off their own light.	Events have causes that
explanations (science) and designing	Some objects give off their own light. (LE.PS4B.a)	generate observable
solutions (engineering) in K-2 builds		patterns.
on prior experiences and progresses	Darkness is the partial or total absence of light.	
to the use of evidence and ideas in	Light is necessary for objects to be seen.	One event can cause
constructing evidence-based	Objects cannot be seen if there is no light to illuminate them.	another event to occur.
accounts of natural phenomena and	Objects can be seen if they give off their own light.	Sometimes this
designing solutions.	Things that give off light are known as light sources including: stars, flashlights, street	produces a pattern of
Make observations (firsthand or	lamps, house lamps, and the sun.	events.
from media) to construct an		
evidence-based account for natural		
phenomena.		
Making observations can be used to		
gather information.		
Make observations to describe		
natural phenomena.		
Observational evidence can be used		
to describe natural phenomena.		
Observational evidence can be used		
to explain natural phenomena.		

Clarification Statement

Examples of observations could include those made in a completely dark room, a pinhole box, or a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light. This can be explored with light tables, 3-way mirrors, overhead projectors, or flashlights.

1-PS4-3 Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light.

LC-1-PS4-3a Through collaborative investigations, recognize that some materials allow light to pass through them.

LC-1-PS4-3b Through collaborative investigations, recognize that some materials allow only some light to pass through them.

LC-1-PS4-3c Through collaborative investigations, recognize that some materials block all the light.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	ELECTROMAGNETIC RADIATION	CAUSE AND EFFECT
investigations: Planning and	Some materials allow light to pass through them, others allow only some light through and	Simple tests can be
carrying out investigations to	others block all the light and create a dark shadow on any surface beyond them, where the	designed to gather
answer questions or test solutions	light cannot reach. Mirrors can be used to redirect a light beam. (The idea that light travels	evidence to support or
to problems in K-2 builds on prior	from place to place is developed through experiences with light sources, mirrors, and	refute student ideas
experiences and progresses to	shadows, but no attempt is made to discuss the speed of light.) (LE.PS4B.b)	about causes.
simple investigations, based on fair		
tests, which provide data to support	The material that an object is made of impacts if light can or cannot pass through it.	Simple tests can be
explanations or design solutions.	Some materials allow light to pass through them.	designed to gather
 Plan and conduct an investigation 	A material that allows all light through (e.g., clear plastic, clear glass) results in the	evidence about cause
collaboratively to produce data to	background lighting up.	and effect relationships.
serve as the basis for evidence to	Some materials allow only some light to pass through them.	Evidence from simple
answer a question.	A material that allows only some light through (e.g., wax paper, clouded plastic) results in	tests can support ideas
	the background lighting up, but not as bright as when the material allows all light in.	about causes.
Plan investigations collaboratively	Some materials block all the light.	Evidence from simple
to produce data to answer a	A material that blocks all of the light (e.g., cardboard, wood) will create a shadow.	tests can refute ideas
question.	Different materials respond to light in different ways.	about causes.
Conduct investigations	Mirrors can be used to redirect light.	
collaboratively to produce data to	A material that changes the direction of the light (e.g., mirror, aluminum foil) will light up	
answer a question.	the surrounding space in a different direction.	

Clarification Statement

Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), or reflective (such as a mirror).

1-PS4-4 Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.

LC-1-PS4-4a When using tools and materials to design and build a device, identify features of devices that people use to send and receive information over long distances.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	INFORMATION TECHNOLOGIES AND INSTRUMENTATION	SYSTEMS AND SYSTEM
designing solutions: Constructing	People also use a variety of devices to communicate (send and receive information) over long	MODELS
explanations (science) and designing	distances. (LE.PS4C.a)	Systems in the natural
solutions (engineering) in K-2 builds		and designed world
on prior experiences and progresses	Communication occurs when people share information with one another through the use of	have parts that work
to the use of evidence and ideas in	words, sounds, or signals.	together.
constructing evidence-based	Light and sound can be used to communicate over long distances.	
accounts of natural phenomena and	A device can use light or sound to send or receive information over a given distance (e.g.,	Systems and system
designing solutions.	cell phones, lighthouses).	models have many
 Use tools and/or materials to 	People use devices like telephones to communicate (send and receive information) over a	parts.
design and/or build a device that	distance.	Systems and system
solves a specific problem or a		models can be used to
solution to a specific problem.	DEVELOPING POSSIBLE SOLUTIONS	understand the
	A situation that people want to change or create can be approached as a problem to be	relationship between
Tools and materials can be used to	solved through engineering. (LE.ETS1A.a)	parts that work
design a device that solves a		together.
specific problem.	People can make plans to solve a problem.	
Tools and materials can be used to	Tools or objects can be used to solve a simple problem.	
design a device that can be a	Engineers use technology to help people solve problems or develop solutions to problems.	
solution to a specific problem.	Engineers design devices or other items to help people solve problems.	
Tools and materials can be used to		
build a device that solves a specific		
problem.		
Tools and materials can be used to		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
build a device that can be a solution to a specific problem.		

Examples of devices could include a light source to send signals, paper cup and string "telephones," or a pattern of drumbeats.

1-LS1-1 Use tools and materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

LC-1-LS1-1a Identify how animals use their external parts to help them survive, grow, and meet their needs.

LC-1-LS1-1b Identify how plants use their external parts to help them survive, grow, and meet their needs.

LC-1-LS1-1c Identify a design solution to a human problem which is similar to how a plant or animal uses its external parts to help it survive, grow, and meet its needs.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	STRUCTURE AND FUNCTION	STRUCTURE AND
designing solutions: Constructing	All organisms have external parts. Different animals use their body parts in different ways to	FUNCTION
explanations (science) and designing	see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and	The shape and stability
solutions (engineering) in K-2 builds	take in food, water, and air. Plants also have different parts (roots, stems, leaves, flowers,	of structures of natural
on prior experiences and progresses	fruits) that help them survive and grow. (LE.LS1A.a)	and designed objects
to the use of evidence and ideas in		are related to their
constructing evidence-based accounts of natural phenomena and	Plants and animals are similar to and different from each other in observable structures and behavior.	function(s).
designing solutions.	Plants and animals have external parts that help them survive.	The shape of structures
Use tools and/or materials to	Animals use their body parts in different ways (see, hear, grasp objects, protection,	in the world (natural
design and/or build a device that	movement, and seek, find, and take in food, water, and air).	and human-designed)
solves a specific problem or a	Plants have different parts (roots, stems, leaves, flowers, fruits) that help them survive and	are related to their
solution to a specific problem.	grow.	function(s).
		The stability of
Tools and materials can be used to	INFORMATION PROCESSING	structures in the world
design a device that solves a	Animals have body parts that capture and convey different kinds of information needed for	(natural and human-
specific problem.	growth and survival. Animals respond to these inputs with behaviors that help them survive.	designed) are related to
Tools and materials can be used to	Plants also respond to some external inputs. (LE.LS1D.a)	their function(s).
design a device that can be a		Shape and stability are
solution to a specific problem.	Plants and animals take in information so they can respond to situations.	related for a variety of
Tools and materials can be used to	Animals use external structures to capture and convey different kinds of information they	structures.
build a device that solves a specific	need.	
problem.	Animals respond to the information they receive from one another or the environment.	
Tools and materials can be used to	Different external structures help protect plants and animals and help them respond to	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
build a device that can be a solution	things around them.	
to a specific problem.		
	DEVELOPING POSSIBLE SOLUTIONS	
	Designs can be conveyed through sketches, drawings, or physical models. These	
	representations are useful in communicating ideas for solutions to a problem. (LE.ETS1B.a)	
	Design solutions can be shared with others as sketches or drawings.	
	Design solutions can be shared with others as models.	
	It is important to communicate information about solutions with others.	
	OPTIMIZING THE DESIGN SOLUTION	
	Because there is always more than one possible solution to a problem, it is useful to compare	
	and test designs. (LE.ETS1C.a)	
	There is often more than one way to solve a problem.	
	It is useful to compare and test designs.	

Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells or animal scales; stabilizing structures by mimicking animal tails or roots on plants; keeping out intruders by mimicking thorns on branches or animal quills; and detecting intruders by mimicking eyes or ears.

1-LS1-2 Read grade-appropriate texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.

LC-1-LS1-2a Use texts or media to identify behaviors of offspring that help them survive.

LC-1-LS1-2b Use texts or media to identify behaviors between parents and offspring that help the offspring survive.

LC-1-LS1-2c Use texts or media to identify patterns in behavior between parents and offspring that help the offspring survive.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	GROWTH AND DEVELOPMENT OF ORGANISMS	PATTERNS
communicating information:	Adult plants and animals can have offspring. In many kinds of animals, parents and the	Patterns in the natural
Obtaining, evaluating, and	offspring themselves engage in behaviors that help the offspring to survive. (LE.LS1B.a)	and human-designed
communicating information in K-2		world can be observed,
builds on prior experiences and uses	Plants and animals have offspring.	used to describe
observations and texts to	Animals often help their offspring to survive.	phenomena, and used
communicate new information.	Parents and their offspring exhibit certain behaviors to ensure that the offspring survive.	as evidence.
 Read grade-appropriate texts 		
and/or use media to obtain scientific		Patterns in the world
and/or technical information to		(natural and human-
determine patterns in and/or		designed) can be
evidence about the natural and		observed.
designed world(s).		Patterns in the world
		(natural and human-
Gather evidence from grade-		designed) can be used
appropriate texts to determine		to describe phenomena.
patterns in the world (natural and		Patterns in the world
human-designed).		(natural and human-
Gather evidence from grade-		designed) can be used
appropriate texts to determine		as evidence.
evidence about the world (natural		
and human-designed).		
Gather evidence from media to		
determine patterns in the world		
(natural and human-designed).		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Gather evidence from media to determine evidence about the world (natural and humandesigned).		

Examples of patterns of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring).

1-LS3-1 Make observations to construct an evidence-based account that young plants and animals are similar, but not exactly like, their parents.

LC-1-LS3-1a Make observations to identify a similarity or a difference in an external feature (e.g., shape of ears) between young animals and their parents.

LC-1-LS3-1b Make observations to identify a similarity or a difference in an external feature (e.g., shape of leaves) between young plants and their parents.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	INHERITANCE OF TRAITS	PATTERNS
designing solutions: Constructing	Young animals are very much, but not exactly like, their parents. Plants also are very much,	Patterns in the natural
explanations (science) and designing	but not exactly like, their parents. (LE.LS3A.a)	and human-designed
solutions (engineering) in K-2 builds		world can be observed,
on prior experiences and progresses	The offspring of some plants and animals resemble the parents.	used to describe
to the use of evidence and ideas in	Young animals are like their parents, but not exactly the same.	phenomena, and used
constructing evidence-based	Young plants are like their parents, but not exactly the same.	as evidence.
accounts of natural phenomena and	The offspring of some plants and animals do not resemble the parents.	
designing solutions.	Similarities between parents and their offspring become more apparent as their life cycle	Patterns in the world
Make observations to construct an	continues.	(natural and human-
evidence-based account for natural		designed) can be
phenomena.	VARIATION OF TRAITS	observed.
	Individuals of the same kind of plant or animal are recognizable as similar but can also vary in	Patterns in the world
Making observations can be used to	many ways. (LE.LS3B.a)	(natural and human-
gather information.		designed) can be used
Make observations to describe	Animals of the same kind can have similar characteristics.	to describe phenomena.
natural phenomena.	Animals of the same kind can have major differences from each other.	Patterns in the world
Observational evidence can be used	Plants of the same kind can have similar characteristics.	(natural and human-
to describe natural phenomena.	Plants of the same kind can have major differences from each other.	designed) can be used
Observational evidence can be used		as evidence.
to explain natural phenomena.		

Clarification Statement

Examples of observations could include: leaves from the same kind of plant are similar in shape but can differ in size, or a particular breed of dog looks like its parents but is not exactly the same. Examples of patterns could include features that plants or animals share.

1-ESS1-1 Use observations of the sun, moon, and stars to describe patterns that can be predicted.

LC-1-ESS1-1a Use observations to describe patterns of movement of the sun, moon, and stars as seen from Earth.

LC-1-ESS1-1b Use observations of patterns of movement to predict appearances of the sun or moon.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	THE UNIVERSE AND ITS STARS	PATTERNS
Analyzing and interpreting data in K-	Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and	Patterns in the natural
2 builds on prior experiences and	predicted. (LE.ESS1A.a)	and human-designed
progresses to collecting, recording,		world can be observed,
and sharing observations.	Some objects are visible in the sky during the day (i.e., sun, moon, stars).	used to describe
Use observations to describe	Some objects are visible in the sky at night (i.e., sun, moon, stars).	phenomena, and used
patterns in the natural world in	The sun and moon appear to move slowly across the sky.	as evidence.
order to answer scientific questions.	People can observe patterns of where the sun, moon, and stars are in the sky.	
	Patterns in the motion of the sun, moon, and stars in the sky can be observed (i.e., the sun	Patterns in the world
Use observations to determine	and moon can be seen at different positions during the day and night).	(natural and human-
patterns in the world.	Patterns in the motion of the sun, moon, and stars in the sky can be predicted.	designed) can be
Use observations to answer		observed.
scientific questions.		Patterns in the world
		(natural and human-
		designed) can be used
		to describe phenomena.
		Patterns in the world
		(natural and human-
		designed) can be used
		as evidence.

Clarification Statement

Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.

1-ESS1-2 Make observations at different times of year to relate the amount of daylight to the time of year.

LC-1-ESS1-2a Use observations to make relative comparisons between the amount of daylight in the winter to the amount of daylight in the spring or fall.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	EARTH AND THE SOLAR SYSTEM	PATTERNS
investigations: Planning and	Seasonal patterns of sunrise and sunset can be observed, described, and predicted.	Patterns in the natural
carrying out investigations to	(LE.ESS1B.a)	and human-designed
answer questions or test solutions		world can be observed,
to problems in K-2 build on prior	Seasonal changes of sunrise and sunset can be observed.	used to describe
experiences and progresses to	Seasonal changes can be described by observing patterns in the sunrise and sunset.	phenomena, and used
simple investigations, based on fair	Seasonal changes can be predicted by observing patterns in the sunrise and sunset.	as evidence.
tests, which provide data to support		
explanations or design solutions.		Patterns in the world
Make observations to collect data		(natural and human-
that can be used to make		designed) can be
comparisons.		observed.
		Patterns in the world
Make observations to collect data.		(natural and human-
Use data to make comparisons.		designed) can be used
		to describe phenomena.
		Patterns in the world
		(natural and human-
		designed) can be used
		as evidence.

Clarification Statement

Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring, fall, or summer.

2-PS1-1 Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

LC-2-PS1-1a Use data to describe different kinds of materials by their observable properties (e.g., color, texture).

LC-2-PS1-1b Use data to classify different kinds of materials by their observable properties (e.g., color, texture).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
investigations: Planning and	Different kinds of matter exist and many of them can be either solid or liquid, depending on	Patterns in the natural
carrying out investigations to	temperature. Matter can be described and classified by its observable properties. (LE.PS1A.c)	and human-designed
answer questions (science) or test		world can be observed,
solutions (engineering) to problems	Different kinds of matter exists.	used to describe
in K-2 builds on prior experiences	Matter is all around us and can be found as a solid or a liquid, depending on its	phenomena, and used
and progresses to simple	temperature.	as evidence.
investigations, based on fair tests,	Matter can be described by its observable properties.	
which provide data to support	Matter can be classified by its observable properties.	Patterns in the world
explanations or design solutions.	Materials can be described and classified according to the following physical properties:	(natural and human-
 Plan and conduct investigations 	size, shape, mass, texture, color, and material composition.	designed) can be
collaboratively to produce data to		observed.
serve as the basis for evidence to		Patterns in the world
answer a question.		(natural and human-
		designed) can be used
Plan investigations collaboratively		to describe phenomena.
to produce data to answer a		Patterns in the world
question.		(natural and human-
Conduct investigations		designed) can be used
collaboratively to produce data to		as evidence.
answer a question.		

Clarification Statement

Observations could include color, texture, hardness, or flexibility. Patterns could include the similar properties that different materials share.

2-PS1-2 Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. *LC-2-PS1-2a Match a property of a material (e.g., hard, flexible, absorbent) to a potential purpose (e.g., hardness of a wooden shelf results in it being better suited for supporting materials than a soft sponge).*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND PROPERTIES OF MATTER	CAUSE AND EFFECT
investigations: Planning and	Different properties are suited to different purposes. (LE.PS1A.a)	Simple tests can be
carrying out investigations to		designed to gather
answer questions (science) or test	Materials can have different properties (e.g., flexibility, hardness, texture).	evidence to support or
solutions (engineering) to problems	Properties of materials can be used to determine how a material could be used.	refute student ideas
in K-2 builds on prior experiences	The properties of materials influence their use.	about causes.
and progresses to simple	Some materials are more suitable for making a particular product or device.	
investigations, based on fair tests,		Simple tests can be
which provide data to support		designed to gather
explanations or design solutions.		evidence about cause
 Plan and conduct investigations 		and effect relationships.
collaboratively to produce data to		Evidence from simple
serve as the basis for evidence to		tests can support ideas
answer a question.		about causes.
		Evidence from simple
Plan investigations collaboratively		tests can refute ideas
to produce data to answer a		about causes.
question.		
Conduct investigations		
collaboratively to produce data to		
answer a question.		

Clarification Statement

Examples of properties could include strength, flexibility, hardness, texture, or absorbency.

2-PS1-3 Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.

LC-2-PS1-3a Identify how a variety of objects can be built up from a small set of pieces.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	STRUCTURE AND PROPERTIES OF MATTER	ENERGY AND MATTER
designing solutions: Constructing	Different properties are suited to different purposes. (LE.PS1A.a)	Objects may break into
explanations (science) and designing		smaller pieces, be put
solutions (engineering) in K-2 builds	Materials can have different properties (e.g., flexibility, hardness, texture).	together into larger
on prior experiences and progresses	Properties of materials can be used to determine how a material could be used.	pieces, or change
to the use of evidence and ideas in	The properties of materials influence their use.	shapes.
constructing evidence-based	Some materials are more suitable for making a particular product or device.	
accounts of natural phenomena and		Objects can be broken
designing solutions.	A great variety of objects can be built up from a small set of pieces. (LE.PS1A.b)	down into smaller
 Make observations (firsthand or 		pieces.
from media) to construct an	Sometimes materials are used to make parts that can be put together to create a variety of	Objects can be built
evidence-based account for natural	objects.	from a smaller set of
phenomena.		pieces.
		Objects can be put
Making observations can be used to		together to form new
gather information.		shapes.
Make observations to describe		
natural phenomena.		
Observational evidence can be used		
to describe natural phenomena.		
Observational evidence can be used		
to explain natural phenomena.		

Examples of pieces could include blocks, building bricks, or other assorted small objects. Provide students with the same number of objects to create a different object.

2-PS1-4 Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. *LC-2-PS1-4a Identify examples of heating substances which cause changes that are sometimes reversible and sometimes not. LC-2-PS1-4b Identify examples of cooling substances which cause changes that are sometimes reversible and sometimes not.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	CHEMICAL REACTIONS	CAUSE AND EFFECT
evidence: Engaging in argument	Heating or cooling a substance may cause changes that can be observed. Sometimes these	Events have causes that
from evidence in K-2 builds on prior	changes are reversible, and sometimes they are not. (LE.PS1B.a)	generate observable
experiences and progresses to		patterns.
comparing ideas and	Heating a substance may cause observable changes.	
representations about the natural	Cooling a substance may cause observable changes.	One event can cause
and designed world(s).	Sometimes changes to a substance from solid to liquid or liquid to solid can be reversed by	another event to occur.
 Construct an argument with 	heating or cooling.	Sometimes this
evidence to support a claim.	Sometimes changes to a substance from solid to liquid or liquid to solid cannot be reversed	produces a pattern of
	by heating or cooling.	events.
Construct an argument using a		
claim and support with evidence.		
Observational data may be used to		
support claims.		
Numerical data may be used to		
support claims.		

Clarification Statement

Demonstrations of reversible changes could include materials such as water, butter or crayons at different temperatures. Demonstrations of irreversible changes could include cooking an egg, freezing a plant leaf, or heating paper.

2-LS2-1 Plan and conduct an investigation to determine if plants need sunlight and water to grow.

LC-2-LS2-1a Use data to describe that plants need water and light to grow.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	CAUSE AND EFFECT
investigations: Planning and	Plants depend on water and light to grow. (LE.LS2A.a)	Events have causes that
carrying out investigations to		generate observable
answer questions (science) or test	Plants are living things that need sunlight and water to grow.	patterns.
solutions (engineering) to problems		
in K-2 builds on prior experiences		One event can cause
and progresses to simple		another event to occur.
investigations, based on fair tests,		Sometimes this
which provide data to support		produces a pattern of
explanations or design solutions.		events.
 Plan and conduct investigations 		
collaboratively to produce data to		
serve as the basis for evidence to		
answer a question.		
Plan investigations collaboratively		
to produce data to answer a		
question.		
Conduct investigations		
collaboratively to produce data to		
answer a question.		

Clarification Statement

Emphasis is on testing one variable at a time during investigations.

2-LS2-2 Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

LC-2-LS2-2a Identify that plants need animals to move their seeds around.

LC-2-LS2-2b Identify a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	STRUCTURE AND
Modeling in K-2 builds on prior	Plants may depend on animals for pollination or to move their seeds around. (LE.LS2A.b)	FUNCTION
experiences and progresses to		The shape and stability
include using and developing	Plants depend on insects and animals to help with pollination in order for more plants to	of structures of natural
models (e.g., diagram, drawing,	grow.	and designed objects
physical replica, diorama,	Plants depend on insects and animals to help with seed dispersal in order for more plants to	are related to their
dramatization, storyboard) that represent concrete events or design	grow.	function(s).
solutions.		The shape of structures
Develop a simple model based on		in the world (natural
evidence to represent a proposed		and human-designed)
object or tool.		are related to their
		function(s).
Develop a model to represent a		The stability of
proposed object.		structures in the world
Develop a model to represent a		(natural and human-
proposed tool.		designed) are related to
		their function(s).
		Shape and stability are
		related for a variety of
		structures.

Clarification Statement

Students could use the model to describe: (1) How the structure of the model gives rise to its function; and (2) Structure-function relationships in the natural world that allow some animals to disperse seeds or pollinate plants.

2-LS4-1 Make observations of plants and animals to compare the diversity of life in different habitats.

LC-2-LS4-1a Make observations to explain that different kinds of living things live in different habitats on land and in water.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	BIODIVERSITY AND HUMANS	PATTERNS
investigations: Planning and	There are many kinds of living things in any area, and they exist in different places on land, in	Patterns in the natural
carrying out investigations to	water, and in air. (LE.LS4D.a)	and human-designed
answer questions (science) or test		world can be observed,
solutions (engineering) to problems	Around the world, plants and animals live in a variety of places on land, in water, and in air.	used to describe
in K-2 builds on prior experiences	There are several different land habitats (e.g., garden, forest, and dessert) and water	phenomena, and used
and progresses to simple	habitats (e.g., swamp, pond, lake, and stream).	as evidence.
investigations, based on fair tests,	Different types of plants are found in different habitats.	
which provide data to support	Different animals live in different habitats.	Patterns in the world
explanations or design solutions.		(natural and human-
Make observations and/or		designed) can be
measurements to collect data that		observed.
can be used to make comparisons.		Patterns in the world
		(natural and human-
Make observations to collect data.		designed) can be used
Use data to make comparisons.		to describe phenomena.
		Patterns in the world
		(natural and human-
		designed) can be used
		as evidence.

Clarification Statement

Emphasis is on the diversity of living things in each of a variety of different habitats. Students could explore different habitats in the community (e.g., school, aquariums, and neighborhoods).

2-LS4-1 Make observations of plants and animals to compare the diversity of life in different habitats.

LC-2-LS4-1a Make observations to explain that different kinds of living things live in different habitats on land and in water.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	BIODIVERSITY AND HUMANS	PATTERNS
investigations: Planning and	There are many kinds of living things in any area, and they exist in different places on land, in	Patterns in the natural
carrying out investigations to	water, and in air. (LE.LS4D.a)	and human-designed
answer questions (science) or test		world can be observed,
solutions (engineering) to problems	Around the world, plants and animals live in a variety of places on land, in water, and in air.	used to describe
in K-2 builds on prior experiences	There are several different land habitats (e.g., garden, forest, and dessert) and water	phenomena, and used
and progresses to simple	habitats (e.g., swamp, pond, lake, and stream).	as evidence.
investigations, based on fair tests,	Different types of plants are found in different habitats.	
which provide data to support	Different animals live in different habitats.	Patterns in the world
explanations or design solutions.		(natural and human-
Make observations and/or		designed) can be
measurements to collect data that		observed.
can be used to make comparisons.		Patterns in the world
		(natural and human-
Make observations to collect data.		designed) can be used
Use data to make comparisons.		to describe phenomena.
		Patterns in the world
		(natural and human-
		designed) can be used
		as evidence.

Clarification Statement

Emphasis is on the diversity of living things in each of a variety of different habitats. Students could explore different habitats in the community (e.g., school, aquariums, and neighborhoods).

2-ESS1-1 Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

LC-2-ESS1-1a Use evidence to understand that some Earth events happen quickly and can be observed (e.g., flood, volcano eruption, earthquake, or erosion of soil).

LC-2-ESS1-1b Use evidence to understand that some Earth events happen slowly (e.g., erosion or weathering of rocks).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	THE HISTORY OF PLANET EARTH	STABILITY AND CHANGE
communicating information:	Some events happen very quickly; others occur very slowly, over a time period much longer	Things may change
Obtaining, evaluating, and	than one can observe. (LE.ESS1C.a)	slowly or rapidly.
communicating information in K-2		
builds on prior experiences and uses	Changes happen to the Earth every day.	In the world, things
observations and texts to	Change can occur slowly or quickly.	may change slowly.
communicate new information.	Earth is always changing.	In the world, things
 Obtain information using various 	We can observe changes in the Earth every day.	may change rapidly.
texts, text features (e.g., headings,	Some events are slow moving and evolve over time.	
tables of contents, glossaries,	Weathering of rocks and erosion are some events that occur very slowly.	
electronic menus, icons), and other	Flooding, severe storms, volcanic eruptions, earthquakes, landslides and erosion of soil can	
media that will be useful in	occur quickly.	
answering a scientific question		
and/or supporting a scientific claim.	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Asking questions, making observations, and gathering information are helpful in thinking	
Read various texts to answer	about problems. (ETS.LE.1A.b)	
scientific questions.		
Read various texts to support a	Ask questions and gather information to define problems.	
scientific claim.	Make observations to define problems.	
Use various forms of media to	Before engineers develop a solution to a problem, they ask questions to understand the	
answer scientific questions.	problems that people face.	
Use various forms of media to	Questions allow scientists to define the problems that require solutions.	
support a scientific claim.	Scientists must determine the problems in order to gather information and design solutions.	
	The process of gathering information through the senses is called observation.	

Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly, and erosion of rocks, which occurs slowly.

2-ESS2-1 Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.

LC-2-ESS2-1a Identify a solution (e.g., using shrubs, grass, or trees) to slow or prevent wind from changing the shape of the land.

LC-2-ESS2-2b Identify a solution (e.g., using shrubs, grass, or trees) to slow or prevent water from changing the shape of the land.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	EARTH MATERIALS AND SYSTEMS	STABILITY AND CHANGE
designing solutions: Constructing	Wind and water can change the shape of the land. (LE.ESS2A.a)	Things may change
explanations (science) and designing		slowly or rapidly.
solutions (engineering) in K-2 builds	Wind can cause changes in the land.	
on prior experiences and progresses	Water can cause changes in the shape of the land.	In the world, things
to the use of evidence and ideas in	Wind can cause changes in the shape of land by blowing or moving away soil or sand.	may change slowly.
constructing evidence-based	Water can cause changes in the shape of land by blowing or moving away soil or sand.	In the world, things
accounts of natural phenomena and		may change rapidly.
designing solutions.	OPTIMIZING THE DESIGN SOLUTION	
 Generate and/or compare 	Because there is always more than one possible solution to a problem, it is useful to compare	
multiple solutions to a problem.	and test designs. (LE.ETS1C.a)	
Generate solutions to a problem.	Design solutions can be shared with others as sketches or drawings.	
Compare solutions to a problem.	Design solutions can be shared with others as models.	
	It is important to communicate information about solutions with others.	
	Testing and comparing designs can provide solutions to a problem.	

Clarification Statement

Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.

2-ESS2-2 Develop a model to represent the shapes and kinds of land and bodies of water in an area.

LC-2-ESS2-2a Use a model to Identify land features and bodies of water (e.g., hill, lake) in an area using a model.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	PLATE TECTONICS AND LARGE-SCALE SYSTEM INTERACTIONS	PATTERNS
Modeling in K-2 builds on prior	Maps show where things are located. One can map the shapes and kinds of land and water in	Patterns in the natural
experiences and progresses to	any area. (LE.ESS2B.a)	and human-designed
include using and developing		world can be observed,
models (i.e., diagram, drawing,	Maps give us information about the land around us.	used to describe
physical replica, diorama,	Maps can show where to find different types of landforms.	phenomena, and used
dramatization, storyboard) that	Maps can show where to find bodies of water.	as evidence.
represent concrete events or design	Maps can show us the shapes of landforms and bodies of water on Earth.	
solutions.	Maps give us different kinds of information depending upon the type of map we are using.	Patterns in the world
 Develop and/or use a model to 		(natural and human-
represent amounts, relationships,	DEVELOPING POSSIBLE SOLUTIONS	designed) can be
relative scales (bigger, smaller),	Designs can be conveyed through sketches, drawings, or physical models. These	observed.
and/or patterns in the natural and	representations are useful in communicating ideas for solutions to a problem. (ETS.LE.1B.a)	Patterns in the world
designed world(s).		(natural and human-
	A model expresses ideas and concepts which can be used to interpret observations and	designed) can be used
Develop models that can be used to	experiments.	to describe phenomena.
show relationships in the world	Design solutions can be shared with others as sketches or drawings.	Patterns in the world
(natural and human-designed).	Design solutions can be shared with others as models.	(natural and human-
Develop models that can be used to	It is important to communicate information about solutions with others.	designed) can be used
show different amounts or scales		as evidence.
(bigger, smaller) in the world		
(natural and human-designed).		
Develop models that can be used to		
show patterns in the world (natural		
and human-designed).		

Clarification Statement
Models do not have to be to scale.

2-ESS2-3 Obtain and communicate information to identify where water is found on Earth and that it can be solid or liquid.

LC-2-ESS2-3a Use information to identify that water is found in many types of places.

LC-2-ESS2-3b Use information to identify that that water exists as solid ice and in liquid form.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	THE ROLES OF WATER IN EARTH'S SURFACE PROCESSES	PATTERNS
communicating information:	Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid	Patterns in the natural
Obtaining, evaluating, and	form. (LE.ESS2C.a)	and human-designed
communicating information in K-2		world can be observed,
builds on prior experiences and uses	On Earth, water is found in oceans, rivers, lakes, and ponds.	used to describe
observations and texts to	This water can be solid or liquid in form.	phenomena, and used
communicate new information.		as evidence.
 Obtain information using various 		
texts, text features (e.g., headings,		Patterns in the world
tables of contents, glossaries,		(natural and human-
electronic menus, icons), and other		designed) can be
media that will be useful in		observed.
answering a scientific question		Patterns in the world
and/or supporting a scientific claim.		(natural and human-
		designed) can be used
Read various texts to answer		to describe phenomena.
scientific questions.		Patterns in the world
Read various texts to support a		(natural and human-
scientific claim.		designed) can be used
Use various forms of media to		as evidence.
answer scientific questions.		
Use various forms of media to		
support a scientific claim.		

Students use reliable sources to identify the patterns of where water is found and its natural form (solid or liquid). Examples of how water can be found on Earth as water or ice could include a frozen pond, a liquid pond, a frozen lake, or a liquid lake.

3-PS2-1 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

LC-3-PS2-1a Identify ways to change the motion of an object (e.g., number, size, or direction of forces).

LC-3-PS2-1b Describe how objects in contact exert forces on each other.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	FORCES AND MOTION	CAUSE AND EFFECT
investigations: Planning and	Each force acts on one particular object and has both strength and a direction. An object at	Cause and effect
carrying out investigations to	rest typically has multiple forces acting on it but they add to give zero net force on the object.	relationships are
answer questions (science) or test	(UE.PS2A.a)	routinely identified,
solutions (engineering) to problems		tested, and used to
in 3-5 builds on K-2 experiences and	A force is a push or pull.	explain change.
progresses to include investigations	A force can cause an object to start moving, stop moving, or change the object's direction.	
that control variables and provide	All forces have strength and direction.	Cause and effect
evidence to support explanations or	Forces typically occur in pairs and can be either balanced or unbalanced.	relationships may be
design solutions.	When balanced forces act on an object it will remain at rest, but if unbalanced forces act on	identified.
 Plan and conduct an investigation 	the object it will begin to move.	Cause and effect
collaboratively to produce data to	If an object is not moving, the total of the forces acting on it have a sum of zero.	relationships may be
serve as the basis for evidence,		tested.
using fair tests in which variables are	Forces that do not sum to zero can cause changes in the object's speed or direction of motion.	Cause and effect
controlled and the number of trials	(Qualitative and conceptual, but not quantitative addition of forces are used at this level.)	relationships may be
considered.	(UE.PS2A.b)	used to explain change.
Plan investigations collaboratively	The motion of an object depends on the effects of multiple forces.	
to produce data to serve as the	If an object is moving, the total of the forces acting on it do not have a sum of zero.	
basis for evidence.	When unbalanced forces are applied to an object, they can cause the object to increase in	
Conduct investigations	speed or change in direction.	
collaboratively to produce data to		
serve as the basis for evidence.	TYPES OF INTERACTIONS	
Plan investigations collaboratively	Objects in contact exert forces on each other. (UE.PS2B.a)	
using fair tests in which variables		
are controlled and the number of	Whenever there is an interaction between two objects, there is a force upon each of the	
trials considered.	objects.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Conduct investigations collaboratively using fair tests in which variables are controlled and the number of trials considered.	When two objects are no longer in contact with one another, the two objects no longer experience the force.	

Examples could include an unbalanced force on one side of an object that can make it start moving, or balanced forces pushing on an object from opposite sides will not produce any motion at all. Investigations include one variable at a time: number, size, or direction of forces.

3-PS2-2 Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion. *LC-3-PS2-2a Describe the patterns of an object's motion in various situations (e.g., a pendulum swinging, a ball moving on a curved track, a magnet repelling another magnet).*

LC-3-PS2-2b Predict future motion of an object given its pattern of motion.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	FORCES AND MOTION	PATTERNS
investigations: Planning and	The patterns of an object's motion in various situations can be observed and measured; when	Patterns of change can
carrying out investigations to	that past motion exhibits a regular pattern, future motion can be predicted from it. (Technical	be used to make
answer questions (science) or test	terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at	predictions.
solutions (engineering) to problems	this level, but the concept that some quantities need both size and direction to be described	
in 3-5 builds on K-2 experiences and	is developed.) (UE.PS2A.c)	A regular pattern of
progresses to include investigations		events can be used to
that control variables and provide	Some objects move in a pattern (e.g., a pendulum swinging, a ball moving on a curved	predict a future event.
evidence to support explanations or	track, a magnet repelling another magnet).	
design solutions.	The patterns changing an object's motion can be observed and measured.	
 Make observations and/or 	The motion of an object can typically be observed and measured.	
measurements to produce data to	Regular patterns changing an object's motion can be used to predict future motion.	
serve as the basis for evidence for		
an explanation of a phenomenon or		
test a design solution.		
Make observations to collect data.		
Make measurements to collect		
data.		
Use data to as evidence for an		
explanation of a phenomenon.		

Clarification Statement

Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, or two children on a see-saw.

3-PS2-3 Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. *LC-3-PS2-3a Ask questions to identify cause and effect relationships of magnetic interactions between two objects not in contact with each other (e.g., how the orientation of magnets affects the direction of the magnetic force).*

LC-3-PS2-3b Ask questions to identify cause and effect relationships of electric interactions (e.g., the force on hair from an electrically charged balloon) between two objects not in contact with each other (e.g., how the distance between objects affects the strength of the force).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	TYPES OF INTERACTIONS	CAUSE AND EFFECT
problems: Asking questions	Electric and magnetic forces between a pair of objects do not require that the objects be in	Cause and effect
(science) and defining problems	contact. The sizes of the forces in each situation depend on the properties of the objects and	relationships are
(engineering) in 3-5 builds on K-2	their distances apart and, for forces between two magnets, on their orientation relative to	routinely identified,
experiences and progresses to	each other. (UE.PS2B.b)	tested, and used to
specifying qualitative relationships.		explain change.
 Ask questions that can be 	There are some forces (e.g., electric and magnetic) that can change the motion of an object	
investigated and predict reasonable	without having contact with that object.	Cause and effect
outcomes based on patterns such as	Magnets attract or repel other magnets and objects.	relationships may be
cause and effect relationships.	Magnets can move objects without touching them.	identified.
	The size of the force depends on the properties of the objects.	Cause and effect
Scientific questions arise in a	The size of the force also depends on the distance between the objects.	relationships may be
variety of ways.	The forces between two magnets depends on their orientation relative to each other.	tested.
Ask scientific questions to which the		Cause and effect
answers can be supported through		relationships may be
investigation.		used to explain change.
Questions can be about the		
prediction of outcomes based on		
cause and effect relationships.		

Clarification Statement

Examples of an electric force could include the force on hair from an electrically charged balloon or the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paper clips, or

the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects the strength of the force or how the orientation of magnets affects the direction of the magnetic force. Examples could include forces produced by objects that can be manipulated by students, or electrical interactions could include static electricity.

3-PS2-4 Define a simple design problem that can be solved by applying scientific ideas about magnets.

LC-3-PS2-4a Identify and describe the scientific ideas necessary for solving a given problem about magnets (e.g., size of the force depends on the properties of objects, distance between the objects, and orientation of magnetic objects relative to one another).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	TYPES OF INTERACTIONS	PATTERNS
problems: Asking questions	Electric and magnetic forces between a pair of objects do not require that the objects be in	Patterns can be used as
(science) and defining problems	contact. The sizes of the forces in each situation depend on the properties of the objects and	evidence to support an
(engineering) in 3-5 builds on K-2	their distances apart and, for forces between two magnets, their orientation relative to each	explanation.
experiences and progresses to	other. (UE.PS2B.b)	
specifying qualitative relationships.		Patterns can be used as
Define a simple design problem	There are some forces (e.g., electric and magnetic) that can change the motion of an object	evidence.
that can be solved through the	without having contact with that object.	Patterns can be used to
development of an object, tool,	Magnets attract or repel other magnets and objects.	support an explanation.
process, or system and includes	Magnets can move objects without touching them.	
several criteria for success and	The size of the force depends on the properties of the objects.	
constraints on materials, time, or	The size of the force also depends on the distance between the objects.	
cost.	The forces between two magnets depends on their orientation relative to each other.	
A simple design problem can be	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
solved with the development of a	Possible solutions to a problem are limited by available materials and resources (constraints).	
new or improved object, tool, or	The success of a designed solution is determined by considering the desired features of a	
process.	solution (criteria). Different proposals for solutions can be compared on the basis of how well	
Develop an object which solves a	each one meets the specified criteria for success or how well each takes the constraints into	
problem using a simple design.	account. (UE.ETS1A.a)	
Develop a tool which solves a		
problem using a simple design.	Possible limits to a design can be in terms of materials, time, or cost.	
Develop a process which solves a	The criteria for success of a design must be determined.	
problem using a simple design.	Solutions can be compared on how well they each solve the problem.	
Develop a system which solves a	Solutions can be compared on how well they each take the constraints into account.	
problem using a simple design.		
Consider criteria for success of a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
design.		
Consider limits to a design in terms		
of materials, time, or cost.		

Examples of problems could include constructing a latch to keep a door shut or creating a device to keep two moving objects from touching each other.

3-LS1-1 Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

LC-3-LS1-1a Identify that organisms have unique and diverse life cycles.

LC-3-LS1-1b Identify a common pattern between models of different life cycles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	GROWTH AND DEVELOPMENT OF ORGANISMS	PATTERNS
Modeling in 3-5 builds on K-2	Reproduction is essential to the continued existence of every kind of organism. Plants and	Patterns of change can
experiences and progresses to	animals have unique and diverse life cycles. (UE.LS1B.a)	be used to make
building and revising simple models		predictions.
and using models to represent	Organisms must reproduce in order for their population to survive.	
events and design solutions.	Organisms (both plants and animals) have different life cycles.	A regular pattern of
 Develop and/or use models to 	All plants and animals go through a life cycle of birth, growth, development, reproduction,	events can be used to
describe and/or predict phenomena.	and death.	predict a future event.
	Patterns in life cycles are describable and differ from organism to organism.	
Use models to describe		
phenomena.		
Use models to predict phenomena.		

Clarification Statement

Changes that organisms go through during their lives form a pattern. For plant life cycles there is an emphasis on flowering plants.

3-LS2-1 Construct and support an argument that some animals form groups that help members survive.

LC-3-LS2-1a Describe that animals within a group help the group obtain food for survival, defend themselves, and survive changes in their ecosystem.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	SOCIAL INTERACTIONS AND GROUP BEHAVIOR	SYSTEMS AND SYSTEM
evidence: Engaging in argument	Being part of a group helps animals obtain food, defend themselves, and cope with changes.	MODELS
from evidence in 3-5 builds on K-2	Groups may serve different functions and vary dramatically in size. (UE.LS2D.a)	A system is a group of
experiences and progresses to		related parts that make
critiquing the scientific explanations	Being part of a group helps some animals obtain food.	up a whole and can
or solutions proposed by peers by	Being part of a group helps some animals defend themselves.	carry out functions its
citing relevant evidence about the	Being part of a group helps some animals cope with changes in the environment.	individual parts cannot.
natural and designed world(s).	The structure of groups of animals may serve many purposes.	
 Construct and/or support an 	Groups of animals vary in size.	A system is a group of
argument with evidence, data,		related parts.
and/or a model.		A system works as a
		whole unit.
Use evidence to construct an		A system is able to
argument.		perform functions that
Use evidence to support an		its individual part
argument.		cannot.
Use data to construct an argument.		
Use data to support an argument.		
Use a model to construct an		
argument.		
Use a model to support an		
argument.		

Clarification Statement

Arguments could include examples of group behavior such as division of labor in a bee colony, flocks of birds staying together to confuse or intimidate predators, or wolves hunting in packs to more efficiently catch and kill prey.

3-LS3-1 Analyze and interpret data to provide evidence that plants and animals have traits inherited from their parents and that variation of these traits exists in a group of similar organisms.

LC-3-LS3-1a Identify similarities in the traits of a parent and the traits of an offspring.

LC-3-LS3-1b Identify that characteristics of organisms are inherited from their parents.

LC-3-LS3-1c Identify variations in similar traits in a group of similar organisms.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	INHERITANCE OF TRAITS	PATTERNS
Analyzing data in 3-5 builds on K-2	Many characteristics of organisms are inherited from their parents. (UE.LS3A.a)	Similarities and
experiences and progresses to		differences in patterns
introducing quantitative approaches	Organisms inherit characteristics from parents.	can be used to sort,
to collecting data and conducting	Organisms reproduce, develop, have predictable life cycles, and pass on many	classify, communicate
multiple trials of qualitative	characteristics to their offspring.	and analyze simple rates
observations. When possible and		of change for natural
feasible, digital tools should be	VARIATION OF TRAITS	phenomena and
used.	Different organisms vary in how they look and function because they have different inherited	designed products.
 Analyze and interpret data to 	information. (UE.LS3B.a)	
make sense of phenomena, using		Similarities and
logical reasoning, mathematics,	Characteristics can vary within groups of similar organisms.	differences in patterns
and/or computation.	Characteristics can vary within groups of similar organisms because of differences in what	can be used to sort
	they inherited from their parents.	simple rates of change
Use logical reasoning to interpret	Organisms with two parents inherit characteristics of both parents.	(natural phenomena
data to make sense of phenomena.		and designed products).
Use mathematics to interpret data		Similarities and
to make sense of phenomena.		differences in patterns
Use computation to interpret data		can be used to classify
to make sense of phenomena.		simple rates of change
Analyze data to make sense of		(natural phenomena
phenomena.		and designed products).
		Similarities and
		differences in patterns

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
		can be used to analyze simple rates of change (natural phenomena and designed products).

Emphasis is on organisms other than humans and does not include genetic mechanisms of inheritance and prediction of traits. Data can include drawings, photographs, measurements, or written observations. Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings.

3-LS3-2 Use evidence to support the explanation that traits can be influenced by the environment.

LC-3-LS3-1a Identify examples of inherited traits that vary between organisms of the same type.

LC-3-LS3-1b Identify a cause and effect relationship between an environmental factor and its effect on a given variation in a trait (e.g., not enough water produces plants that have fewer flowers than plants that had more water available).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	INHERITANCE OF TRAITS	CAUSE AND EFFECT
designing solutions: Constructing	Other characteristics result from individuals' interactions with the environment, which can	Cause and effect
explanations (science) and designing	range from diet to learning. Many characteristics involve both inheritance and environment.	relationships are
solutions (engineering) in 3-5 builds	(UE.LS3A.b)	routinely identified,
on K-2 experiences and progresses		tested, and used to
to the use of evidence in	Some traits in organisms that vary are influenced by the environment.	explain change.
constructing explanations that	Some traits in organisms that vary are influenced by the inheritance of traits.	
specify variables that describe and	Many characteristics involve both inheritance and environment.	Cause and effect
predict phenomena and in designing		relationships may be
multiple solutions to design	VARIATION OF TRAITS	identified.
problems.	The environment also affects the traits that an organism expresses. (UE.LS3B.b)	Cause and effect
• Use evidence (e.g., measurements,		relationships may be
observations, patterns) to construct	The organism's environment can influence some traits.	tested.
or support an explanation or design	External environmental factors can modify an individual's specific development,	Cause and effect
a solution to a problem.	appearance, behavior, and likelihood of producing offspring.	relationships may be
		used to explain change.
Support an explanation using		
evidence (e.g., measurements,		
observations, patterns).		
Construct an explanation using		
evidence (e.g., measurements,		
observations, patterns).		

Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted or an animal that is given too much food and little exercise may become overweight.

3-LS4-1 Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

LC-3-LS4-1a Identify that fossils represent plants and animals that lived long ago.

LC-3-LS4-1b Identify that fossils provide evidence about the environments in which organisms lived long ago (e.g., fossilized seashells indicate shelled organisms that lived in aquatic environments).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	SCALE, PROPORTION,
Analyzing data in 3-5 builds on K-2	Some kinds of plants and animals that once lived on Earth are no longer found anywhere.	AND QUANTITY
experiences and progresses to	(UE.LS4A.a)	Natural objects and/or
introducing quantitative approaches		observable phenomena
to collecting data and conducting	Some plants and animals that once lived on Earth are no longer alive.	exist from the very small
multiple trials of qualitative	Most of the species that have lived on Earth no longer exist.	to the immensely large
observations. When possible and		or from very short to
feasible, digital tools should be used.	Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environment. (UE.LS4A.b)	very long time periods.
Analyze and interpret data to		Natural processes vary
make sense of phenomena, using	Fossils provide us with evidence of organisms that lived long ago.	in size (very small to the
logical reasoning, mathematics,	Fossils provide us with evidence about the environment from the past in which living	immensely large).
and/or computation.	organisms once lived.	Natural processes vary
		in time span (very short
Use logical reasoning to interpret		to very long).
data to make sense of phenomena.		Observable phenomena
Use mathematics to interpret data		vary in size (very small
to make sense of phenomena.		to the immensely
Use computation to interpret data		large).
to make sense of phenomena.		Observable phenomena
Analyze data to make sense of		vary in time span (very
phenomena.		short to very long).

Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include major fossil types such as marine fossils found on dry land, tropical plant fossils found in arctic areas, or fossils of extinct organisms and relative ages.

3-LS4-2 Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

LC-3-LS4-2a Identify features and characteristics that enable an organism to survive in a particular environment.

LC-3-LS4-2b Identify features and characteristics that increase an organism's chances of finding mates.

LC-3-LS4-2c Identify features and characteristics that increase an organism's chances of reproducing.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL SELECTION	CAUSE AND EFFECT
designing solutions: Constructing	Sometimes the differences in characteristics between individuals of the same species provide	Cause and effect
explanations (science) and designing	advantages in surviving, finding mates, and reproducing. (UE.LS4B.a)	relationships are
solutions (engineering) in 3-5 builds		routinely identified,
on K-2 experiences and progresses	Different plants and animals of the same species have some different characteristics.	tested, and used to
to the use of evidence in	Some organisms have characteristics that make them better able to survive than other	explain change.
constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems. • Use evidence (e.g., measurements, observations, patterns) to construct or support an explanation or design a solution to a problem.	organisms of the same species. Some organisms have characteristics that make them better able to find mates than other organisms of the same species. Some organisms have characteristics that make them better able to reproduce than other organisms of the same species. Characteristics that make it easier for some organisms to survive, find mates, and reproduce give those organisms an advantage over other organisms of the same species that don't have those characteristics.	Cause and effect relationships may be identified. Cause and effect relationships may be tested. Cause and effect relationships may be used to explain change.
Support an explanation using evidence (e.g., measurements,		
observations, patterns).		
Construct an explanation using		
evidence (e.g., measurements,		
observations, patterns).		

Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten or animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.

3-LS4-3 Construct and support an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

LC-3-LS4-3a Identify changes in a habitat that would cause some organisms to move to new locations.

LC-3-LS4-3b Identify changes in a habitat that would cause some organisms to die.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ADAPTATION	CAUSE AND EFFECT
evidence: Engaging in argument	For any particular environment, some kinds of organisms survive well, some survive less well,	Cause and effect
from evidence in 3-5 builds on K-2	and some cannot survive at all. (UE.LS4C.a)	relationships are
experiences and progresses to		routinely identified,
critiquing the scientific explanations	Organisms of the same type can vary in appearance.	tested, and used to
or solutions proposed by peers by	Habitats can cause some organisms to survive well, less well, or not at all.	explain change.
citing relevant evidence about the	There can be a cause and effect relationship between characteristics of some kinds of	
natural and designed world(s).	organisms (e.g., a specific variation in a characteristic) and its ability to survive and	Cause and effect
 Construct and/or support an 	reproduce.	relationships may be
argument with evidence, data,	These variations may provide an advantage in reproduction and survival.	identified.
and/or a model.		Cause and effect
		relationships may be
Use evidence to construct an		tested.
argument.		Cause and effect
Use evidence to support an		relationships may be
argument.		used to explain change.
Use data to construct an argument.		
Use data to support an argument.		
Use a model to construct an		
argument.		
Use a model to support an		
argument.		

Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitats make up a system in which the parts depend on each other.

3-LS4-4 Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

LC-3-LS4-4a Identify evidence that supports a claim that changes in habitats affect the organisms living there.

LC-3-LS4-4b Identify a solution to a problem that is caused when the environment changes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	SYSTEMS AND SYSTEM
evidence: Engaging in argument	When the environment changes in ways that affect a place's physical characteristics,	MODELS
from evidence in 3-5 builds on K-2	temperature, or availability of resources, some organisms survive and reproduce, others	A system can be
experiences and progresses to	move to new locations, yet others move into the transformed environment, and some die.	described in terms of its
critiquing the scientific explanations	(UE.LS2C.a)	components and their
or solutions proposed by peers by		interactions.
citing relevant evidence about the	Changes in one part of an Earth system affect other parts of the system.	
natural and designed world(s).	An environment's physical characteristics can change.	A system can be
Make a claim about the merit of a	An environment's temperature may change.	described in terms of its
solution to a problem by citing	Availability of natural resources can change over time in an environment.	parts.
relevant evidence about how it	When an environment changes, some organisms survive and reproduce.	A system can be
meets the criteria and constraints of	When an environment changes, some organisms move to new locations.	described in terms of
a problem.	When an environment changes, some organisms move into the changed environment.	how its parts interact.
	When an environment changes, some organisms die.	
Cite evidence to support a claim		
about the solution to a problem.	BIODIVERSITY AND HUMANS	
Cite evidence to support a claim	Populations live in a variety of habitats, and change in those habitats affects the organisms	
about how the solution to a	living there. (UE.LS4D.a)	
problem meets the criteria.		
Cite evidence to support a claim	Populations of organisms live in many different habitats.	
about how the solution to a	Changes to an environment have an impact on the living organisms in the habitat.	
problem meets the constraints of	Organisms change over time.	
the situation.		
	DEVELOPING POSSIBLE SOLUTIONS	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (ETS.UE.1B.b)	
	Share ideas about how to solve problems with peers. Sharing ideas with peers can improve solution designs.	

Examples of environmental change(s) could include changes in land characteristics, water distribution, temperature, food, and other biological communities. Louisiana specific examples could include impacts related to levees, dams, crop rotations, irrigation systems, hunting limits, diversion canals, or sea level rise.

3-ESS2-1 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. LC-3-ESS2-1a Use data to describe observed weather conditions (e.g., temperature, precipitation, wind direction) during a season. LC-3-ESS2-1b Use data to predict weather conditions (e.g., temperature, precipitation, wind direction) during a season.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	WEATHER AND CLIMATE	PATTERNS
Analyzing data in 3-5 builds on K-2	Scientists record patterns of the weather across different times and areas so that they can	Patterns of change can
experiences and progresses to introducing quantitative approaches	make predictions about what kind of weather might happen next. (UE.ESS2D.a)	be used to make predictions.
to collecting data and conducting	Scientists can use data tables to show how the weather changes over time.	
multiple trials of qualitative observations. When possible and feasible, digital tools should be used. • Represent data in tables and/or various graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships.	Looking at the records of weather over time can help us identify weather patterns. There are seasonal patterns that help people predict future weather. Weather scientists, called meteorologists, use weather patterns to predict typical weather conditions during a particular season in different areas.	A regular pattern of events can be used to predict a future event.
Use data tables to describe patterns that show relationships. Use graphical displays (bar graphs, pictographs and/or pie charts) to describe patterns that show relationships.		

Clarification Statement

Examples of data could include average temperature, precipitation, and wind direction. Examples of data representations could include pictographs and bar graphs.

3-ESS2-2 Obtain and combine information to describe climates in different regions around the world. *LC-3-ESS2-2a Identify and describe climates in different regions of the world (e.g., equatorial, polar).*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	WEATHER AND CLIMATE	PATTERNS
communicating information:	Climate describes a range of an area's typical weather conditions and the extent to which	Patterns of change can
Obtaining, evaluating, and	those conditions vary over years. (UE.ESS2D.b)	be used to make
communicating information in 3-5		predictions.
builds on K-2 experiences and	Patterns of weather can be attributed to the climates in different regions.	
progresses to evaluating the merit	Climate describes how weather conditions in a region varies over time.	A regular pattern of
and accuracy of ideas and methods.	Patterns in climate can be used to predict typical weather conditions.	events can be used to
 Obtain and combine information 		predict a future event.
from books and/ or other reliable		
media to explain phenomena or		
solutions to a design problem.		
Combine information from various		
books to explain phenomena.		
Combine information from various		
books to support a solution to a problem.		
Combine information from various		
forms of media to explain		
phenomena .		
Combine information from various		
forms of media to support a		
solution to a problem.		

C	la	ri	Fi,	2	+i	^	~ C	ita	to	m	0	nt	
	ıа	ш	ш	L a	ш	u		ola	ш				

Information could include rainfall and temperature data.

3-ESS3-1 Make a claim about the merit of a design solution that reduces the impact of a weather-related hazard.

LC-3-ESS3-1a Identify the positive impact of a solution humans can take to reduce the impact of weather-related hazards (e.g., barriers to prevent flooding).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept	
Engaging in argument from	NATURAL HAZARDS	CAUSE AND EFFECT	
evidence: Engaging in argument	A variety of natural hazards result from natural processes. Humans cannot eliminate natural	Cause and effect	
from evidence in 3-5 builds on K-2	hazards but can take steps to reduce their impacts. (UE.ESS3B.a)	relationships are	
experiences and progresses to		routinely identified,	
critiquing the scientific explanations	Natural hazards are the result of natural processes.	tested, and used to	
or solutions proposed by peers by	Earth's processes can affect human life.	explain change.	
citing relevant evidence about the	Humans can take steps to reduce the impacts that natural hazards have on humans.		
natural and designed world(s).	Among other things, structures can be built outside of the natural floodplains; structures	Cause and effect	
Make a claim about the merit of a	can be built to prevent areas from flooding (levees, barrier islands); and forecasting can	relationships may be	
solution to a problem by citing	prevent loss of life.	identified.	
relevant evidence about how it		Cause and effect	
meets the criteria and constraints of	DEVELOPING POSSIBLE SOLUTIONS	relationships may be	
the problem.	Research on a problem should be carried out before beginning to design a solution. Testing a	tested.	
	solution involves investigating how well it performs under a range of likely conditions.	Cause and effect	
Cite evidence to support a claim	(ETS.UE.1B.a)	relationships may be	
about the solution to a problem.		used to explain change.	
Cite evidence to support a claim	Researching a problem allow scientists to define the problems that require solutions.		
about how the solution to a	Researching a possible solution to a problem will help show how well it is likely to meet the		
problem meets the criteria.	identified criteria for a successful solution.		
Cite evidence to support a claim	Testing a possible solution to a problem will help show how well it is likely to meet the		
about how the solution to a	identified criteria for a successful solution under different conditions.		
problem meets the constraints of	Engineers test their solutions under many conditions to determine the strengths and		
the situation.	weaknesses of the solution.		

Examples could include an unbalanced force on one side of an object that can make it start moving, or balanced forces pushing on an object from opposite sides will not produce any motion at all. Investigations include one variable at a time: number, size, or direction of forces.

4-PS3-1 Use evidence to construct an explanation relating the speed of an object to the energy of that object.

LC-4-PS3-1a Identify that moving objects contain energy.

LC-4-PS3-1b Demonstrate that objects moving faster possess more energy than objects moving slower.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing solutions: Constructing	The faster a given object is moving, the more energy it possesses. (UE.PS3A.a)	Energy can be
explanations (science) and designing		transferred in various
solutions (engineering) in 3-5 builds	The speed of an object is related to the energy it possesses.	ways and between
on K-2 experiences and progresses	The energy of a moving object depends on its speed.	objects.
to the use of evidence in	Objects moving faster possess more energy than objects moving slower.	
constructing explanations that		Energy can be
specify variables that describe and		transferred in a system.
predict phenomena and in designing		Energy can be
multiple solutions to design		transferred between
problems.		objects.
 Use evidence (e.g., measurements, 		
observations, patterns) to construct		
or support an explanation or design		
a solution to a problem.		
Support an explanation using		
evidence (e.g., measurements,		
observations, patterns).		
Construct an explanation using		
evidence (e.g., measurements,		
observations, patterns).		

Clarification Statement

Relating the speed of an object to the energy of the object does not require calculation of the object's speed.

4-PS3-2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. LC-4-PS3-2a Identify examples of how energy can be moved from place to place (i.e., through sound or light traveling; by electrical currents; heat passing from one object to another).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	DEFINITIONS OF ENERGY	ENERGY AND MATTER
investigations: Planning and	Energy can be moved from place to place by moving objects or through sound, light, or	Energy can be
carrying out investigations to	electric currents. (UE.PS3A.b)	transferred in various
answer questions (science) or test		ways and between
solutions (engineering) to problems	Energy can be transferred by moving objects.	objects.
in 3-5 builds on K-2 experiences and	Energy can be transferred through sound.	
progresses to include investigations	Energy can be transferred through light.	Energy can be
that control variables and provide	Energy can be transferred through electric currents.	transferred in a system.
evidence to support explanations or		Energy can be
design solutions.	CONSERVATION OF ENERGY AND ENERGY TRANSFER	transferred between
Make observations and/or	Energy is present whenever there are moving objects, sound, light, or heat. When objects	objects.
measurements to produce data to	collide, energy can be transferred from one object to another, thereby changing their motion.	
serve as the basis for evidence for	In such collisions, some energy is typically also transferred to the surrounding air; as a result,	
an explanation of a phenomenon or	the air gets heated and sound is produced. (UE.PS3B.a)	
test a design solution.		
	Energy can be observed in a variety of situations (e.g., moving objects, sound, light, or	
Make observations to collect data.	heat).	
Make measurements to collect	Pushing and pulling forces can be used to transfer energy from one object to another.	
data.	Energy is transferred when objects collide.	
Use data as evidence for an explanation of a phenomenon.	In a collision, some energy is also transferred to the surrounding air. As a result, sound is produced.	
	An object's motion may change after a collision (i.e., increase or decrease speed, stop, or	
	move an object farther than when the same object is moving more slowly),	
	An object moving faster will have more energy due to motion; therefore, it will have a	
	larger impact on another object. This impact results in an energy transfer.	
	Light also transfers energy from place to place. (UE.PS3B.b)	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Light is a form of energy. Light can transfer energy. When light is absorbed by a material, most of its energy is changed (transformed) into heat energy.	
	Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (UE.PS3B.c)	
	Electric currents can transfer energy. Electric currents can transform energy into motion, sound, heat, or light. Transforming motion into electrical energy produces electric currents. Electrical systems can be designed to perform a variety of tasks.	

When energy is transferred it may change forms such as when light from the sun warms a window pane.

4-PS3-3 Ask questions and predict outcomes about the changes in energy that occur when objects collide.

LC-4-PS3-3a Identify the change in energy or the change in objects' motions when objects collide (e.g., speeds as objects interact, direction).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	DEFINITIONS OF ENERGY	ENERGY AND MATTER
problems: Asking questions	Energy can be moved from place to place by moving objects or through sound, light, or	Energy can be
(science) and defining problems	electric currents. (UE.PS3A.b)	transferred in various
(engineering) in 3-5 builds on K-2		ways and between
experiences and progresses to	Energy can be transferred by moving objects.	objects.
specifying qualitative relationships.	Energy can be transferred through sound.	
 Ask questions that can be 	Energy can be transferred through light.	Energy can be
investigated and predict reasonable	Energy can be transferred through electric currents.	transferred in a system.
outcomes based on patterns such as		Energy can be
cause and effect relationships.	CONSERVATION OF ENERGY AND ENERGY TRANSFER	transferred between
	Energy is present whenever there are moving objects, sound, light, or heat. When objects	objects.
Scientific questions arise in a	collide, energy can be transferred from one object to another, thereby changing their motion.	
variety of ways.	In such collisions, some energy is typically also transferred to the surrounding air; as a result,	
Ask scientific questions to which the answers can be supported through	the air gets heated and sound is produced. (UE.PS3B.a)	
investigation. Questions can be about the	Energy can be observed in a variety of situations (e.g., moving objects, sound, light, or heat).	
prediction of outcomes based on cause and effect relationships.	Pushing and pulling forces can be used to transfer energy from one object to another. Energy is transferred when objects collide.	
	In a collision, some energy is also transferred to the surrounding air. As a result, sound is produced.	
	An object's motion may change after a collision (i.e., increase or decrease speed, stop, or	
	move an object farther than when the same object is moving more slowly).	
	An object moving faster will have more energy due to motion; therefore, it will have a	
	larger impact on another object. This impact results in an energy transfer.	
	RELATIONSHIP BETWEEN ENERGY AND FORCES	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	When objects collide, the contact forces transfer energy so as to change the objects' motions. (UE.PS3C.a)	
	When two objects collide they exert forces on each other. Objects with greater energy transfer some of the energy to the object with lesser energy within the system. The motion of an object is dependent on the amount of force applied to it.	

Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact. Quantitative measurements of energy are not included.

4-PS3-4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

LC-4-PS3-4a Relate an example that demonstrates that energy can be converted from one form to another form (e.g., electric circuits that convert electrical energy into light, motion, sound or heat).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	CONSERVATION OF ENERGY AND ENERGY TRANSFER	ENERGY AND MATTER
designing solutions: Constructing	Energy can also be transferred from place to place by electric currents, which can then be	Energy can be
explanations (science) and designing	used locally to produce motion, sound, heat, or light. The currents may have been produced	transferred in various
solutions (engineering) in 3-5 builds on K-2 experiences and progresses	to begin with by transforming the energy of motion into electrical energy. (UE.PS3B.c)	ways and between objects.
to the use of evidence in	Electric currents can transfer energy.	
constructing explanations that	Electric currents can transform energy into motion, sound, heat, or light.	Energy can be
specify variables that describe and	Transforming motion into electrical energy produces electric currents.	transferred in a system.
predict phenomena and in designing	Electrical systems can be designed to perform a variety of tasks.	Energy can be
multiple solutions to design		transferred between
problems.	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	objects.
 Apply scientific ideas to solve 	The expression "produce energy" typically refers to the conversion of stored energy into a	
design problems.	desired form for practical use. (UE.PS3D.a)	
Solve design problems by applying	Energy can be produced (i.e., converted) to many forms.	
scientific knowledge.	Energy cannot be created or destroyed.	
	Energy can only be transferred or converted from one form to another.	
	OPTIMIZING THE DESIGN SOLUTION	
	Different solutions need to be tested in order to determine which of them best solves the	
	problem, given the criteria and the constraints. (UE.ETS1C.a)	
	Carry out tests in which variables are controlled and failure points are considered to	
	determine which solution best solves the problem.	
	Different solutions must be tested for defects.	
	Evaluate the design solution according to how well it met the criteria and constraints.	

Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound and a passive solar heater that converts light into heat. Example of constraints could include the materials, cost, or time to design the device.

4-PS4-1 Develop a model of waves to describe patterns in terms of amplitude and wavelength and to show that waves can cause objects to move.

LC-4-PS4-1a Describe the properties of waves using a model (e.g., drawings, diagrams) to show amplitude (height) and wavelength.

LC-4-PS4-1b Identify relationships involving wave amplitude, wavelength, and the motion of an object (e.g., when the amplitude increases, the object moves more).

LC-4-PS4-1c Identify amplitude as a measure of energy in a wave.

LC-4-PS4-1d Identify wavelength as the distance between a point on one wave and the identical point on the next wave.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	WAVE PROPERTIES	PATTERNS
Modeling in 3-5 builds on K-2	Waves, which are regular patterns of motion, can be made in water by disturbing the surface.	Similarities and
experiences and progresses to	When waves move across the surface of deep water, the water goes up and down in place; it	differences in patterns
building and revising simple models	does not move in the direction of the wave except when the water meets the beach.	can be used to sort,
and using models to represent	(UE.PS4A.a)	classify, communicate
events and design solutions.		and analyze simple rates
 Develop a model using an analogy, 	Waves are regular patterns of motion.	of change for natural
example, or abstract representation	A wave can travel in water.	phenomena and
to describe a scientific principle or	A wave traveling in water causes the water to move up and down in place.	designed products.
design solution.	Water does not move in the direction of the wave.	
	A wave becomes steep as it moves into shallow water near the shore and moves the water	Similarities and
An analogy can be the basis of a	on to the beach.	differences in patterns
model.	When waves meet the beach, they act differently by moving towards the shore.	can be used to sort
A model is supported by examples.		simple rates of change
Models may use abstract	Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing	(natural phenomena
representations.	between wave peaks). (UE.PS4A.b)	and designed products).
Models can be used to describe a		Similarities and
scientific principle.	Wave patterns can be observed by wave amplitude and wavelength.	differences in patterns
Models can be used to describe a	Waves vary in amplitude (height) and wavelength.	can be used to classify
design solution.		simple rates of change
		(natural phenomena
		and designed products).
		Similarities and
		differences in patterns

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
		can be used to analyze simple rates of change (natural phenomena and designed products).

Examples of models could include diagrams, analogies, or physical models using wire to illustrate wavelength and amplitude of waves. Examples of wave patterns could include the vibrating patterns associated with sound or the vibrating patterns of seismic waves produced by earthquakes. Does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.

4-PS4-2 Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. LC-4-PS4-2a Arrange a model to show that light can be seen when light reflected from its surface enters the eye.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	ELECTROMAGNETIC RADIATION	CAUSE AND EFFECT
Modeling in 3-5 builds on K-2	An object can be seen when light reflected from its surface enters the eyes. (UE.PS4B.a)	Cause and effect
experiences and progresses to		relationships are
building and revising simple models	Objects in the dark cannot be seen.	routinely identified,
and using models to represent	Objects can be seen when they are illuminated.	tested, and used to
events and design solutions.	Sight occurs when light reflects from objects and enters the eye.	explain change.
 Develop and/or use models to 	Objects cannot be seen if there is no light to illuminate them, but the same object in the	
describe and/or predict phenomena.	same space can be seen if a light source is introduced.	Cause and effect
		relationships may be
Models can be used to describe		identified.
phenomena.		Cause and effect
Models can be used to predict		relationships may be
phenomena.		tested.
		Cause and effect
		relationships may be
		used to explain change.

Clarification Statement

Develop a model to make sense of a phenomenon involving the relationship between light reflection and visibility of objects. In the model, identify the relevant components including light and its source, objects, the path that light follows, and the eye.

4-LS1-1 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

LC-4-LS1-1a Identify external macroscopic structures (e.g., bird beaks, eyes, feathers, roots, needles on a pine tree) that support growth, survival, behavior, and reproduction of organisms.

LC-4-LS1-1b Identify internal structures (e.g., heart, muscles, bones) that support growth, survival, behavior, and reproduction of organisms.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	STRUCTURE AND FUNCTION	SYSTEMS AND SYSTEM
evidence: Engaging in argument	Plants and animals have both internal and external structures that serve various functions in	MODELS
from evidence in 3-5 builds on K-2	growth, survival, behavior, and reproduction. (UE.LS1A.a)	A system can be
experiences and progresses to		described in terms of its
critiquing the scientific explanations	Plants have structures like thorns, stems, and roots that support survival, growth, behavior,	components and their
or solutions proposed by peers by	and reproduction.	interactions.
citing relevant evidence about the	Animals have structures like hearts, stomachs, and lungs that support survival, growth,	
natural and designed world(s).	behavior, and reproduction.	A system can be
 Construct and/or support an 		described in terms of its
argument with evidence, data,		parts.
and/or a model.		A system can be
		described in terms of
Use evidence to construct an		how its parts interact.
argument.		
Use evidence to support an		
argument.		
Use data to construct an argument.		
Use data to support an argument.		
Use a model to construct an		
argument.		
Use a model to support an		
argument.		

Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, shells, fur, or skin.

4-LS1-2 Construct an explanation to describe how animals receive different types of information through their senses, process the information in their brains, and respond to the information in different ways.

LC-4-LS1-2a Identify that sense receptors provide different kinds of information, which is processed by the brain.

LC-4-LS1-2b Identify how animals use their sense receptors to respond to different types of information (e.g., sound, light, odor, temperature) in their surroundings with behaviors that help them survive.

LC-4-LS1-2c Identify how animals use their memories to help them survive.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Science and Engineering Practice Constructing explanations and designing solutions: Constructing explanations (science) and designing solutions (engineering) in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.	STRUCTURE AND FUNCTION Different sense receptors are specialized for particular kinds of information, which then may be processed by the animal's brain. Animals are able to use their perceptions and memories to guide their actions. (UE.LS1D.a) Senses help humans and other organisms detect internal and external cues. Animals have structures that aid them with receiving and processing information through their senses. Animals use their senses to respond to information they receive. The brain receives signals from parts of the body via the senses.	CAUSE AND EFFECT Events that occur together with regularity might or might not be a cause and effect relationship. Some events that occur together have a cause and effect relationship.
redict phenomena and in designing ultiple solutions to design	Animals use their senses to respond to information they receive.	together have a cause
variable or a set of variables. An explanation can be based on an observed relationship.		

Emphasis is on systems of information transfer. Responses could include animals running from predators, animals returning to breeding grounds, animals scavenging for food, or humans responding to stimuli.

4-ESS1-1 Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in landforms over time. LC-4-ESS1-1a Identify rock formations that show how the Earth's surface has changed over time (e.g., change following earthquakes). LC-4-ESS1-1b Identify older fossils as being found in deeper, older rock layers.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	THE HISTORY OF PLANET EARTH	PATTERNS
designing solutions: Constructing	Local, regional, and global patterns of rock formations reveal changes over time due to Earth's	Patterns can be used as
explanations (science) and designing	forces such as earthquakes and volcanoes. The presence and location of certain fossil types	evidence to support an
solutions (engineering) in 3-5 builds	indicate the order in which rock layers were formed. (UE.ESS1C.a)	explanation.
on K-2 experiences and progresses		
to the use of evidence in	As rocks and land formations change (e.g., Earth forces such as earthquakes and volcanoes),	Patterns can be used as
constructing explanations that	scientists are able to study the rock formations.	evidence.
specify variables that describe and	The study of rock formations help explain how the landscape has changed over time.	Patterns can be used to
predict phenomena and in designing	Rock formations can be examined to identify patterns in rock layers and fossils found in	support an explanation.
multiple solutions to design	those rock layers.	
problems.	Patterns of rock formation can show the order in which rock layers were formed.	
Identify the evidence that	Fossils in rock layers are evidence that Earth's surfaces have changed over time.	
supports particular points in an		
explanation.		
Support an explanation with		
evidence.		
Specific points can be part of an		
explanation.		
Support each particular point with		
evidence.		

Clarification Statement

Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time, and a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock. Does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formation and layers.

4-ESS2-1 Plan and conduct investigations on the effects of water, ice, wind, and vegetation on the relative rate of weathering and erosion.

LC-4-ESS2-1a Use data to compare differences in the shape of the land due to the effects of weathering or erosion.

LC-4-ESS2-1b Identify how living things affect the shape of the land.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	EARTH MATERIALS AND SYSTEMS	CAUSE AND EFFECT
investigations: Planning and	Rainfall helps to shape the land and affects the types of living things found in a region. Water,	Cause and effect
carrying out investigations to	ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles	relationships are
answer questions (science) or test	and move them around. (UE.ESS2A.a)	routinely identified,
solutions (engineering) to problems		tested, and used to
in 3-5 builds on K-2 experiences and	Rainfall shapes the land.	explain change.
progresses to include investigations	Rainfall affects living things.	
that control variables and provide	Water, ice, wind, and vegetation can break down rocks into smaller pieces.	Cause and effect
evidence to support explanations or	Water, ice, wind, and vegetation can break down soils and sediments into smaller pieces.	relationships may be
design solutions.	Erosion is the movement of rocks, soil, and sediment from one place to another.	identified.
 Plan and conduct an investigation 	Water, ice, wind, and vegetation can affect weathering and erosion by moving particles	Cause and effect
collaboratively to produce data to	from one place to another.	relationships may be
serve as the basis for evidence,	Ice erosion occurs when a large chunk of ice, usually a glacier, is moved (often due to	tested.
using fair tests in which variables are	gravity) and wears away the rocks or soil.	Cause and effect
controlled and the number of trials	Wind, or the movement of air, also causes erosion.	relationships may be
considered.	Water or rainfall can chemically weather rocks.	used to explain change.
Plan investigations collaboratively	BIOGEOLOGY	
to produce data to serve as the	Living things affect the physical characteristics of their environment. (UE.ESS2E.a)	
basis for evidence.		
Conduct investigations	Living organisms affect landforms.	
collaboratively to produce data to	Living things impact the movement of rocks, soil, and sediments in different ways.	
serve as the basis for evidence.	Plants affect the environment in many ways; they die and decay and become part of the	
Plan investigations collaboratively	soil, some have roots that can stabilize or destabilize the soil.	
using fair tests in which variables		
are controlled and the number of		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
trials considered.	Animals affect the environment in many ways: some eat plants, they disturb rocks, soil, and	
Conduct investigations	sediment, some build dams or nests, others burrow into the ground.	
collaboratively using fair tests in		
which variables are controlled and		
the number of trials considered.		

Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.

4-ESS2-2 Analyze and interpret data from maps to describe patterns of Earth's features.

LC-4-ESS2-2a Use maps to locate different land and water features of Earth.

LC-4-ESS2-2b Use maps to determine that earthquakes and volcanoes often occur along the boundaries between continents.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	PLATE TECTONICS AND LARGE-SCALE SYSTEM INTERACTIONS	PATTERNS
Analyzing data in 3-5 builds on K-2	The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes,	Patterns can be used as
experiences and progresses to	and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are	evidence to support an
introducing quantitative approaches	often along the boundaries between continents and oceans. Major mountain chains form	explanation.
to collecting data and conducting	inside continents or near their edges. Maps can help locate the different land and water	
multiple trials of qualitative	features of Earth. (UE.ESS2B.a)	A scientific explanation
observations. When possible and		is supported by
feasible, digital tools should be	The locations of mountain ranges, deep ocean trenches, earthquakes, and volcanoes occur	evidence.
used.	in patterns.	Patterns can be used as
Analyze and interpret data to	Most earthquakes and volcanoes are located on the boundaries of continents.	evidence.
make sense of phenomena using	Mountains form inside continents or on their boundaries.	
logical reasoning.	Maps can be used to track and illustrate changes of land and water features over time.	
	Maps can be used to determine where earthquakes, volcanoes, mountain chains, and other	
Use data to make sense of	land and water features occur on Earth.	
phenomena.		
Use logical reasoning to make		
sense of phenomena.		
Analyze data to make sense of		
phenomena.		

Clarification Statement

Maps can include topographic maps of Earth's land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.

4-ESS2-3 Ask questions that can be investigated and predict reasonable outcomes about how living things affect the physical characteristics of their environment.

LC-4-ESS2-3a Identify how plants affect the environment (e.g., some have roots that can stabilize or destabilize the soil).

LC-4-ESS2-3b Identify how animals affect the environment (e.g., they disturb rocks, soil, and sediment; some build dams or nests).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	BIOGEOLOGY	CAUSE AND EFFECT
problems: Asking questions (science) and defining problems	Living things affect the physical characteristics of their environment. (UE.ESS2E.a)	Cause and effect relationships are
(engineering) in 3-5 builds on K-2	Living organisms affect landforms.	routinely identified,
experiences and progresses to specifying qualitative relationships. • Ask questions that can be	Living things impact the movement of rocks, soil, and sediments in different ways. Plants affect the environment in many ways; they die and decay and become part of the soil, some have roots that can stabilize or destabilize the soil.	tested, and used to explain change.
investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.	Animals affect the environment in many ways: some eat plants, they disturb rocks, soil, and sediment, some build dams or nests, others burrow into the ground.	Cause and effect relationships may be identified. Cause and effect
Scientific questions arise in a variety of ways.		relationships may be tested.
Ask scientific questions to which the answers can be supported through investigation.		Cause and effect relationships may be used to explain change.
Questions can be about the prediction of outcomes based on cause and effect relationships.		, amening

Clarification Statement

Investigations include making observations in various habitats in real life or virtual circumstances. Living things could include animals such as beavers, crawfish, armadillos, nutria, gophers, and plants such as kudzu, water hyacinth, and Chinese tallow.

4-ESS3-1 Obtain and combine information to describe that energy and fuels are derived from renewable and non-renewable resources and how their uses affect the environment.

LC-4-ESS3-1a Identify the origins of the natural sources humans use for energy and fuel.

LC-4-ESS3-1b Identify environmental effects associated with the use of a given energy resource.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	NATURAL RESOURCES	CAUSE AND EFFECT
communicating information:	Energy and fuels (fossil fuels, wind energy, solar energy, hydroelectric energy) that humans	Cause and effect
Obtaining, evaluating, and	use are derived from natural sources, and their use affects the environment in multiple ways.	relationships are
communicating information in 3-5	Some resources are renewable over time, and others are not. (UE.ESS3A.a)	routinely identified,
builds on K-2 experiences and		tested, and used to
progresses to evaluating the merit and accuracy of ideas and methods.	Natural resources are materials found in nature that have not been made by people or animals.	explain change.
Obtain and combine information	All of the energy and fuels that humans use come from natural resources.	Cause and effect
from books and/or other reliable	The use of natural resources by humans affects the environment.	relationships may be
media to explain phenomena or	Humans can alter the living and non-living factors within an ecosystem, creating changes to	identified.
solutions to a design problem.	the overall system.	Cause and effect
Obtain and combine information from various books to explain	Different technologies are used to access resources to meet human wants and needs. Methods used to access resources for human wants and needs affect the environment. Some of these resources are renewable and can be used over or can be replaced.	relationships may be tested. Cause and effect
phenomena.	Some resources are non-renewable and are limited and cannot be replaced or reused.	relationships may be
Obtain and combine information		used to explain change.
from various books to support a solution to a problem.		
Obtain and combine information		
from various forms of media to		
explain phenomena.		
Obtain and combine information		
from various forms of media to support a solution to a problem.		

Examples of renewable energy resources could include wind energy, hydroelectric energy, and solar energy; nonrenewable energy resources are fossil fuels. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning fossil fuels.

4-ESS3-2 Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

LC-4-ESS3-2a Describe solutions to reduce the impact of a natural Earth process (e.g., earthquake, flood, volcanic activity) on humans.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL HAZARDS	CAUSE AND EFFECT
designing solutions: Constructing	A variety of natural hazards result from natural processes. Humans cannot eliminate natural	Cause and effect
explanations (science) and designing	hazards but can take steps to reduce their impacts. (UE.ESS3B.a)	relationships are
solutions (engineering) in 3-5 builds		routinely identified,
on K-2 experiences and progresses	Natural hazards are the result of natural processes.	tested, and used to
to the use of evidence in	Earth's processes can affect human life.	explain change.
constructing explanations that	Humans can take steps to reduce the impacts that natural hazards have on humans.	
specify variables that describe and	Among other things, structures can be built outside of the natural floodplains; structures	Cause and effect
predict phenomena and in designing	can be built to prevent areas from flooding (levees, barrier islands); and forecasting can	relationships may be
multiple solutions to design	prevent loss of life.	identified.
problems.		Cause and effect
Generate and compare multiple	DEVELOPING POSSIBLE SOLUTIONS TO ENGINEERING PROBLEMS	relationships may be
solutions to a problem based on	Testing a solution involves investigating how well it performs under a range of likely	tested.
how well they meet the criteria and	conditions. (UE.ETS1B.d)	Cause and effect
constraints of the design solution.		relationships may be
	Part of the engineering process is testing a solution.	used to explain change.
A design solution must include	Testing a possible solution to a problem will help show how well it is likely to meet the	
specifying constraints and criteria	identified criteria for a successful solution under different conditions.	
for desired qualities of the solution.	Engineers test their solutions under many conditions to determine the strengths and	
Multiple solutions to a problem	weaknesses of the solution.	
may be developed.		
Solutions can be compared.		
Comparisons should be based on		
how well each solution meets the		
constraints and criteria of the		
design.		
Design solutions can be revised and		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
improved as part of the design		
process.		

Examples of solutions could include designing flood, wind, or earthquake resistant structures and models to prevent soil erosion.

5-PS1-1 Develop a model to describe that matter is made of particles too small to be seen.

LC-5-PS1-1a Identify in a model (e.g., picture, diagram) which shows that all matter can be broken down into smaller and smaller pieces until they are too small to be seen by human eyes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION,
Modeling in 3-5 builds on K-2	Matter of any type can be subdivided into particles that are too small to see, but even then	AND QUANTITY
experiences and progresses to	the matter still exists and can be detected by other means. A model showing that gases are	Natural objects and/or
building and revising simple models	made from matter particles that are too small to see and are moving freely around in space	observable phenomena
and using models to represent	can explain many observations, including boiling water, the inflation and shape of a balloon,	exist from the very small
events and design solutions.	and the effects of air on larger particles or objects. (UE.PS1A.a)	to the immensely large
 Develop and/or use models to 		or from very short to
describe and/or predict phenomena.	Matter is anything that occupies space and has mass.	very long time periods.
	Everything around us (matter) is made up of particles that are too small to be seen.	
Models can be used to describe	Models may be used to gain an understanding of these tiny particles.	Natural processes vary
phenomena.	Matter that cannot be seen can be detected in other ways.	in size (very small to the
Models can be used to predict	Gas (air) has mass and takes up space.	immensely large).
phenomena.	Gas (air) particles, which are too small to be seen, can affect larger particles and objects.	Natural processes vary
	Gas particles, which freely move around in space, until they hit a material that keeps them	in time span (very short
	from moving further, thus trapping the gas (e.g., air inflating a basketball, an expanding	to very long).
	balloon).	Observable phenomena
		vary in size (very small
		to the immensely
		large).
		Observable phenomena
		vary in time span (very
		short to very long).

Clarification Statement

Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, or evaporating salt water. Does not include atomic scale mechanism of evaporation and condensation or defining the unseen particles.

5-PS1-2 Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total amount of matter is conserved.

LC-5-PS1-2a Identify using measurements that the total weight of matter is conserved when it changes form.

LC-5-PS1-2b Identify using measurements that the total weight of matter is conserved before and after they are heated, cooled, or mixed.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	STRUCTURE AND PROPERTIES OF MATTER	ENERGY AND MATTER
computational thinking:	The amount of mass in matter is conserved when it changes form, even in transitions in which	Matter flows and cycles
Mathematical and computational	it seems to vanish. (UE.PS1A.b)	can be tracked in terms
thinking in		of mass of the
3-5 builds on K-2 experiences and	Matter can change in different ways.	substances before and
progresses to extending quantitative	Regardless of the type of change, none of the particles are lost, and the total mass of the	after a process occurs.
measurements to a variety	system is the same.	The total mass of the
of physical properties and using	The mass of substances are the same before and after they change form (e.g., heating,	substances does not
computation and mathematics to	cooling, or mixing).	change. This is what is
analyze data and compare		meant by conservation
alternative design solutions.	CHEMICAL REACTIONS	of matter. Matter is
 Describe, measure, estimate, 	When two or more different substances are mixed, a new substance with different properties	transported into, out of,
and/or graph quantities (e.g., area,	may be formed. (UE.PS1B.a)	and within systems.
volume, time) to address scientific		
and engineering questions and	When substances are mixed, the change can result in a new substance.	Matter flows and cycles
problems.	Substances change during a chemical reaction.	(e.g., water going back
	A new substance may have different properties than the individual substances from which it	and forth between
Mathematics can be used to	was made.	Earth's atmosphere and
represent physical variables and		its surface).
their relationships.	No matter what reaction or change in properties occurs, the total mass of the substances	Matter can change, but,
Tools can be used for observing,	does not change. (UE.PS1B.b)	the total mass of the
describing, measuring, recording,		substances is the same.
and graphing data.	In a closed system, the total mass will not change.	Matter is conserved.
Descriptions can be used to address	During a physical or chemical change, the total mass of the substances do not change.	Matter can be
problems (scientific and	After a change, the total mass of the new substance(s) will be the same as the total mass of	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
engineering).	the beginning substances.	transported into, out of,
Measurements can be used to address problems (scientific and engineering). Estimates can be used to address problems (scientific and engineering). Graphing quantities (e.g., area, volume, time) can be used to address problems (scientific and engineering).	The total mass of matter is conserved after heating, cooling or mixing substances.	and within systems.

Examples of chemical changes includes reactions that produce new substances with new properties. Examples of physical changes could include phase changes, dissolving, or mixing.

5-PS1-3 Make observations and measurements to identify materials based on their properties.

LC-5-PS1-3a Identify that materials can be classified based on a variety of observable physical properties (e.g., shape, texture, buoyancy, color, magnetism, solubility).

LC-5-PS1-3b Classify materials (e.g., shape, texture, buoyancy, color, magnetism, solubility) by measurable physical properties.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION,
Investigations: Planning and	Measurements of a variety of properties can be used to identify materials. (UE.PS1A.c)	AND QUANTITY
carrying out investigations to		Standard units are used
answer questions	Everything around us has unique properties that can be used to identify them, such as what	to measure and describe
(science) or test solutions	color they are, how hard they are, if they reflect light, whether they conduct electricity or	physical quantities such
(engineering) to problems in 3-5	heat, whether they are magnetic, and whether they dissolve in water.	as mass, time,
builds on K-2 experiences and	Properties can be used to identify materials.	temperature, and
progresses to include investigations	Properties can be measured.	volume.
that control variables and provide	Materials can be identified based on their observable and measurable properties.	
evidence to support explanations or	Properties of materials may include color, hardness, reflectivity, electrical conductivity,	Physical quantities
design solutions.	thermal conductivity, response to magnetic forces, and solubility.	(mass, time,
 Make observations and/or 	Tools such as graduated cylinders, balances, rulers, magnifiers, simple circuits, and magnets	temperature, and
measurements to produce data to	are used to study the physical properties.	volume) can be
serve as the basis for evidence for		measured.
an explanation of a phenomenon or		Physical quantities are
test a design solution.		measured using
		standard units.
Make observations to collect data.		Measurements of
Make measurements to collect		physical properties can
data.		be used to describe
Use data to as evidence for an		physical quantities.
explanation of a phenomenon.		

Examples of materials to be identified could include baking soda and other powders, metals, minerals, or liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, or solubility; density is not intended to be used as an identifiable property. No attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.

5-PS1-4 Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

LC-5-PS1-4a Identify that when two or more different substances are mixed, a new substance with different properties may be formed.

LC-5-PS1-4b Identify the changes that occur when two or more substances are mixed using evidence provided from data.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CHEMICAL REACTIONS	CAUSE AND EFFECT
Investigations: Planning and	When two or more different substances are mixed, a new substance with different properties	Cause and effect
carrying out investigations to	may be formed. (UE.PS1B.a)	relationships are
answer questions		routinely identified,
or test solutions to problems in 3-5	When substances are mixed, a change can occur which results in a new substance.	tested, and used to
builds on K-2 experiences and	Substances change during a chemical reaction.	explain change.
progresses to include investigations	A new substance may have different properties than the individual substances from which it	
that control variables and provide	was made.	Cause and effect
evidence to support explanations or		relationships may be
design solutions.		identified.
 Plan and conduct an investigation 		Cause and effect
collaboratively to produce data to		relationships may be
serve as the basis for evidence,		tested.
using fair tests in which variables are		Cause and effect
controlled and the number of trials		relationships may be
considered.		used to explain change.
Plan investigations collaboratively		
to produce data to serve as the		
basis for evidence.		
Conduct investigations		
collaboratively to produce data to		
serve as the basis for evidence.		
Plan investigations collaboratively		
using fair tests in which variables		
are controlled and the number of		
trials considered.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Conduct investigations		
collaboratively using fair tests in		
which variables are controlled and		
the number of trials considered.		

Examples of interactions forming new substances can include mixing baking soda and vinegar. Examples of interactions not forming new substances can include mixing baking soda and water.

5-PS2-1 Support an argument that the gravitational force exerted by the Earth is directed down. *LC-5-PS2-1a Identify that the gravitational force exerted by Earth on objects is directed down.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	TYPES OF INTERACTIONS	CAUSE AND EFFECT
evidence: Engaging in argument	The gravitational force of Earth acting on an object near Earth's surface pulls that object	Cause and effect
from evidence in 3-5 builds on K-2	toward the planet's center. (UE.PS2B.c)	relationships are
experiences and progresses to		routinely identified,
critiquing the scientific explanations	Gravity is what makes things fall to Earth's center.	tested, and used to
or solutions proposed by peers by	Gravity is an invisible force.	explain change.
citing relevant evidence about the	Some forces (e.g., gravity) can make things move without touching them.	
natural and designed world(s)	Gravity is what makes things fall.	Cause and effect
Construct and/or support an	The gravitational pull of Earth always pulls down to the center of the planet.	relationships may be
argument with evidence, data,		identified.
and/or a model		Cause and effect
		relationships may be
Use evidence to construct an		tested.
argument.		Cause and effect
Use evidence to support an		relationships may be
argument.		used to explain change.
Use data to construct an argument.		
Use data to support an argument.		
Use a model to construct an		
argument.		
Use a model to support an		
argument.		

Clarification Statement

"Down" is a local description of the direction that points toward the center of the spherical Earth. Earth's mass causes objects to have a force on them that points toward the center of the Earth, "down". Support for arguments can be drawn from diagrams, evidence, and data that are provided. This does not include mathematical representation of gravitational force.

5-PS3-1 Use models to describe that energy in animals' food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

LC-5-PS3-1a Identify that the energy in animals' food was once energy from the sun.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	ENERGY AND MATTER
Modeling in 3-5 builds on K-2	The energy released from food was once energy from the sun that was captured by plants in	Energy can be
experiences and progresses to	the chemical process that forms plant matter (from air and water). (UE.PS3D.b)	transferred in various
building		ways and between
and revising simple models and	All of the energy (i.e., food) that sustains ecosystems comes from the sun.	objects.
using models to represent events	Energy from the sun is taken in by plants along with air and water and changed into food	
and design solutions.	for the plant.	Energy can be
 Develop and/or use models to 	Plants need the sun's energy to grow and survive.	transferred.
describe and/or predict phenomena.	Animals need food to provide materials and energy for life which they derive directly or	Energy can be
	indirectly from plants.	transferred between
Models can be used to describe		objects.
phenomena.	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	
Models can be used to predict	Food provides animals with the materials they need for body repair and growth and energy	
phenomena.	they need to maintain body warmth and for motion. (UE.LS1C.a)	
	All organisms require energy.	
	Animals depend on food for the materials they need to repair injuries.	
	Animals depend on food the energy they need to maintain body temperature.	
	Animals depend on food for the materials they need to grow and move.	

	Clarification Statement
Examples of models could include diagrams or flowcharts.	

5-LS1-1 Ask questions about how air and water affect the growth of plants.

LC-5-LS1-1a Identify that plants acquire material for growth chiefly from air and water, not from soil.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
problems: Asking questions	Plants acquire their material for growth chiefly from air and water. (UE.LS1C.b)	Matter is transported
(science) and defining problems		into, out of, and within
(engineering) in 3-5 builds on K-2	A plant receives the material it needs for growth from air and water.	systems.
experiences and progresses to	Plants need the sun's energy to grow and survive.	
specifying qualitative relationships.		Matter is anything that
 Ask questions that can be 		has mass and takes up
investigated and predict reasonable		space.
outcomes based on patterns such as		A system is an
cause and effect relationships.		organized group of
		components that
Scientific questions arise in a		interact.
variety of ways.		There are different
Ask scientific questions to which the		types of systems.
answers can be supported through		Matter can be
investigation.		transported into, out of,
Questions can be about the		and within systems.
prediction of outcomes based on		
cause and effect relationships.		

Clarification Statement

Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil. The chemical processes of photosynthesis and cellular respiration are not addressed at this grade level.

5-LS2-1 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. *LC-5-LS2-1a Identify a model that shows the movement of matter (e.g., plant growth, eating, composting) through living things.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	SYSTEMS AND SYSTEM
Modeling in 3-5 builds on K-2	The food of almost any kind of animal can be traced back to plants. Organisms are related in	MODELS
experiences and progresses to	food webs in which some animals eat plants for food and other animals eat the animals that	A system can be
building and revising simple models	eat plants. (UE.LS2A.a)	described in terms of its
and using models to represent		components and their
events and design solutions.	Plants are the base of most ecosystems.	interactions.
 Develop and/or use models to 	Some animals eat only plants for food.	
describe and/or predict phenomena.	Some animals eat other animals for food.	A system can be
	Some animals eat both plants and animals for food.	described in terms of its
Models can be used to describe		parts.
phenomena.	Some organisms, such as fungi and bacteria, break down dead organisms and therefore	A system can be
Models can be used to predict	operate as "decomposers." Decomposition eventually restores (recycles) some materials back	described in terms of
phenomena.	to the soil. (UE.LS2A.b)	how its parts interact.
	Decomposers break down dead plants and animals.	
	Decomposers recycle nutrients and material back into the soil to be used by plants again.	
	Organisms can survive only in environments in which their particular needs are met. A healthy	
	ecosystem is one in which multiple species of different types are each able to meet their	
	needs in a relatively stable web of life. (UE.LS2A.c)	
	Overwiens live in account one that most their most	
	Organisms live in ecosystems that meet their needs.	
	In a healthy ecosystem, organisms are connected to the other components and rely on the	
	other components to survive.	
	Newly introduced species can damage the balance of an ecosystem. (UE.LS2A.d)	
	Some changes to an ecosystem (i.e., introduction of a new species) can upset the balance of	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	an ecosystem.	
	CYCLES OF MATTER AND ENERGY TRANSFER IN ECOSYSTEMS Matter cycles between the air and soil and among plants, animals, decomposers, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (UE.LS2B.a)	
	Food and other materials are broken down and cycled between the air, plants, animals, and the soil. Living organisms depend on air and water from the environment. Living organisms release waste matter back to the environment.	

Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems of the Earth not including molecular explanations.

5-ESS1-1 Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth. *LC-5-ESS1-1a Identify that the sun appears larger and brighter than other stars because the sun is much closer to Earth than other stars.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	THE UNIVERSE AND ITS STARS	SCALE, PROPORTION,
evidence: Engaging in argument	The sun is a star that appears larger and brighter than other stars because it is closer. Stars	AND QUANTITY
from evidence in 3-5 builds on K-2	range greatly in their distance from Earth. (UE.ESS1A.a)	Natural objects and/or
experiences and progresses to		observable phenomena
critiquing the scientific explanations	The sun is a star.	exist from the very small
or solutions proposed by peers by	The sun is the brightest object in Earth's sky.	to the immensely large
citing relevant evidence about the	Other stars are much farther from Earth.	or from very short to
natural and designed world(s).	Other stars appear dimmer and smaller than the sun because they are very far away from	very long time periods.
 Construct and/or support an 	Earth.	
argument with evidence, data,		Natural processes vary
and/or a model.		in size (very small to the
		immensely large).
Use evidence to construct an		Natural processes vary
argument.		in time span (very short
Use evidence to support an		to very long).
argument.		Observable phenomena
Use data to construct an argument.		vary in size (very small
Use data to support an argument.		to the immensely
Use a model to construct an		large).
argument.		Observable phenomena
Use a model to support an		vary in time span (very
argument.		short to very long).

Clarification Statement

Examples include the relative distances of the stars, but not the sizes. It does not include other factors that affect apparent brightness (such as stellar masses, age, stage).

5-ESS1-2 Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

LC-5-ESS1-2a Describe similarities and differences in the timing of observable changes in shadows.

LC-5-ESS1-2b Describe similarities and differences in the timing of observable changes in day and night.

LC-5-ESS1-2c Describe similarities and differences in the timing of observable changes in the appearance of stars that are visible only in particular months.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	HISTORY OF PLANET EARTH	PATTERNS
Analyzing data in 3-5 builds on K-2	The orbits of Earth around the sun and of the moon around Earth, together with the rotation	Similarities and
experiences and progresses to	of Earth about an axis between its North and South poles, cause observable patterns. These	differences in patterns
introducing quantitative approaches	include: day and night, daily changes in the length and direction of shadows, and different	can be used to sort,
to collecting data and conducting	positions of the sun, moon, and stars at different times of the day, month, and year.	classify, communicate
multiple trials of qualitative	(UE.ESS1B.a)	and analyze simple rates
observations. When possible and		of change for natural
feasible, digital tools should be	Gravitational force from the sun keeps Earth in orbit around the sun, and the moon in orbit	phenomena and
used.	around Earth.	designed products.
 Represent data in tables and/or 	Earth rotates about its axis between the North and South poles.	
various graphical displays (bar	As Earth revolves (moves around the sun) and rotates (spins on its axis), changes such as the	Similarities and
graphs, pictographs and/or pie	movement of shadows can be observed.	differences in patterns
charts) to reveal patterns that	As Earth moves around the sun and rotates on its axis, changes such as patterns of night	can be used to sort
indicate relationships.	and day can be observed.	simple rates of change
	As Earth revolves (moves around the sun) and rotates (spins on its axis), changes such as	(natural phenomena
Use data tables to describe	nightly, monthly, and seasonal movements of the moon can be observed.	and designed products).
patterns that show relationships.	As Earth revolves (moves around the sun) and rotates (spins on its axis), changes such as	Similarities and
Use graphical displays (bar graphs,	nightly, monthly, and seasonal movements of the stars can be observed.	differences in patterns
pictographs and/or pie charts) to	Observable, predictable patterns of movement in the sun, Earth, moon system occur	can be used to classify
describe patterns that show	because of gravitational interaction and energy from the sun.	simple rates of change
relationships.		(natural phenomena
		and designed products).
		Similarities and
		differences in patterns

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
		can be used to analyze simple rates of change (natural phenomena and designed products).

Patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months; not including the causes of the seasons.

5-ESS2-1 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. *LC-5-ESS2-1a Describe that the Earth's major systems interact and affect Earth's surface materials and processes.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	EARTH MATERIALS AND SYSTEMS	SYSTEMS AND SYSTEM
Modeling in 3-5 builds on K-2	Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the	MODELS
experiences and progresses to	hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including	A system can be
building and revising simple models	humans). These systems interact in multiple ways to affect Earth's surface materials and	described in terms of its
and using models to represent	processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and	components and their
events and design solutions.	influences climate. Winds and clouds in the atmosphere interact with the landforms to	interactions.
 Develop and/or use models to 	determine patterns of weather. (UE.ESS2A.b)	
describe and/or predict phenomena.		A system can be
	Earth is a dynamic system resulting from interactions among the geosphere, hydrosphere,	described in terms of its
Models can be used to describe	atmosphere and biosphere.	parts.
phenomena.	All of Earth's features, everything on land (soil, sediments, rocks, and landforms), all the	A system can be
Models can be used to predict	water, and all living things on Earth interact with each other.	described in terms of
phenomena.	Earth's systems interact with each other.	how its parts interact.
	Earth's vast oceans support life and many ecosystems.	
	Earth's vast oceans shape the land (e.g., coasts).	
	Earth's vast oceans influence climate.	
	Coastal locations are often cooler in the summer and warmer in the winter due to the slow	
	temperature change of the ocean and winds that blow air onto land.	
	Clouds are shaped by winds and are made of small water droplets or ice crystals.	
	Earth's atmosphere is influenced by the surface features of the Earth creating weather.	
	Interactions between landforms and the atmosphere create weather patterns.	
	Weather changes daily and seasonally.	
	While the weather can change in just a few hours, climate takes hundreds, thousands, even millions of years to change.	

Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.

5-ESS2-2 Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

LC-5-ESS2-2a Determine that the majority of water on Earth is found in the oceans as salt water and most of the Earth's fresh water is stored in glaciers.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	THE ROLES OF WATER IN EARTH'S SURFACE PROCESSES	SCALE, PROPORTION,
computational thinking:	Nearly all of Earth's available water is in the ocean. Most fresh water is in glaciers or	AND QUANTITY
Mathematical and computational	underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.	Standard units are used
thinking in 3-5	(UE.ESS2C.a)	to measure and describe
builds on K-2 experiences and		physical quantities such
progresses to extending quantitative	Most of Earth's water is found in oceans.	as mass, time,
measurements to a variety of	A small amount of freshwater is accessible to humans.	temperature, and
physical properties and using	Most freshwater is found in glaciers or underground.	volume.
computation and mathematics to	Streams, wetlands, and lakes contain only a small part of Earth's freshwater.	
analyze data and compare		Physical quantities
alternative design solutions.	Liquid water can become the gas form of water (water vapor) and liquid water can become a	(mass, time,
 Describe, measure, estimate, 	solid as ice. (UE.ESS2C.b)	temperature, and
and/or graph quantities (e.g., area,		volume) can be
volume, time) to address scientific	Water may undergo physical changes such as freezing (solid), melting (liquid), or	measured.
and engineering questions and	evaporating (water vapor).	Physical quantities are
problems.	Water moves from one place on Earth to another in a continuous cycle through the	measured using
	processes of evaporation, condensation, and precipitation.	standard units.
Mathematics can be used to		Measurements of
represent physical variables and		physical properties can
their relationships.		be used to describe
Tools can be used for observing,		physical quantities.
describing, measuring, recording,		
and graphing data.		
Descriptions can be used to address		
problems (scientific and		
engineering).		
Measurements can be used to		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
address problems (scientific and engineering).		
Estimates can be used to address problems (scientific and engineering).		
Graphing quantities (e.g., area, volume, time) can be used to address problems (scientific and engineering).		

Examples include oceans, lakes, rivers, glaciers, ground water, and polar ice caps.

5-ESS3-1 Generate and compare multiple solutions about ways individual communities can use science to protect the Earth's resources and environment. LC-5-ESS3-1a Identify ways people can help protect the Earth's resources and environment.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	HUMAN IMPACTS ON EARTH SYSTEMS	SYSTEMS AND SYSTEM
designing solutions: Constructing	Human activities in agriculture, industry, and everyday life have had major effects on the land,	MODELS
explanations (science) and designing	vegetation, streams, ocean and the atmosphere. But individuals and communities are doing	A system can be
solutions (engineering) in 3-5 builds	things to help protect Earth's resources and environments. (UE.ESS3C.a)	described in terms of its
on K-2 experiences and progresses		components and their
to the use of evidence in	People use a variety of plants and animals found throughout the world for food, clothing,	interactions.
constructing explanations that	and shelter.	
specify variables that describe and	The flow of river water can be affected by human activities.	A system can be
predict phenomena and in designing	Ground cover can be affected by human activities.	described in terms of its
multiple solutions to design	Land can be affected by human activities.	parts.
problems.	Humans use natural resources to meet their needs and wants.	A system can be
Generate and compare multiple	Some changes to ecosystems are due to humans using resources within the ecosystem.	described in terms of
solutions to a problem based on	Humans have had major effects on the land, vegetation, streams, ocean and the	how its parts interact.
how well they meet the criteria and	atmosphere.	
constraints of the design solution.	Human activities may cause pollution of air, water, and soil.	
	There are many ways for people to conserve natural resources and energy by recycling,	
A design solution must include	reducing and reusing.	
specific constraints and criteria for	There are many ways for people to conserve natural resources.	
desired qualities of the solution.		
Multiple solutions to a problem	DEVELOPING POSSIBLE SOLUTIONS	
may be developed.	Tests are often designed to identify failure points or difficulties, which suggest the elements	
Solutions can be compared.	of the design that need to be improved. (ETS.UE.1B.c)	
Comparisons should be based on		
how well each solution meets the	Tests can be carried out to identify failure points or difficulties.	
constraints and criteria of the	After testing, defects are identified.	
design.	Using information from testing, improvements to a solution to best solve a problem can be	
Design solutions can be revised and	determined.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
improved as part of the design		
process.		

Examples of solutions can include cleanup of oil spills, protecting against coastal erosion, or prevention of polluted runoff into waterways.

6-MS-PS1-1 Develop models to describe the atomic composition of simple molecules and extended structures.

LC-6-MS-PS1-1a Identify a model that shows an atom's nucleus is made of protons and neutrons, and is surrounded by electrons.

LC-6-MS-PS1-1b Identify a model that shows individual atoms of the same or different types that repeat to form compounds (e.g., sodium chloride).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION,
Modeling in 6-8 builds on K-5 and	Substances are made from different types of atoms, which combine with one another in	AND QUANTITY
progresses to developing, using and	various ways. Atoms form molecules that range in size from two to thousands of atoms.	Time, space, and energy
revising models to describe, test,	(MS.PS1.A.a)	phenomena can be
and predict more abstract		observed at various
phenomena and design systems.	All matter is composed of tiny particles called atoms.	scales using models to
Develop and/or use a model to	Atoms are the basic unit of a chemical element.	study systems that are
predict and/or describe phenomena.	Substances are made from different types of atoms.	too large or too small.
	Atoms form molecules ranging from small to very complex structures.	
Models can be used to describe	A molecule is a group of atoms that are joined together and act as a single unit.	Phenomena can be
phenomena.	Molecules can contain as many as a billion atoms or as few as two.	observed at different
Models can be used to predict	The arrangement, motion, and interaction of these particles determine the three states of	scales (micro and
phenomena.	matter (solid, liquid, and gas).	macro) in a system.
		Phenomena can be
	Solids may be formed from molecules, or they may be extended structures with repeating	studied using models.
	subunits (e.g., crystals). (MS.PS1A.e)	Models can be used to
		explain time, space, and
	Solids have a definite volume and a definite shape.	energy phenomena.
	Solids may be formed from molecules.	
	Solids can be extended structures with repeating subunits.	
	Repeating subunits can create crystal structures.	
	Salt, sugar, sand, and snow are examples of crystalline solids.	

Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include carbon dioxide and water. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3-D models, or computer representations showing different molecules with different types of atoms.

6-MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.

LC-6-MS-PS2-1a Describe the motion of two colliding objects in terms of the strength of the force and the relationship of action and reaction forces given a model or scenario.

LC-6-MS-PS2-1b Develop a solution to a problem involving the motion of two colliding objects.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	FORCES AND MOTION	SYSTEMS AND SYSTEM
designing solutions: Constructing	For any pair of interacting objects, the force exerted by the first object on the second object is	MODELS
explanations (science) and designing	equal in strength to the force that the second object exerts on the first, but in the opposite	Models can be used to
solutions (engineering) in 6-8 builds	direction (Newton's third law). (MS.PS2A.a)	represent systems and
on K-5 experiences and progresses		their interactions—such
to include designing solutions	Forces can be used to transfer energy from one object to another.	as inputs, processes and
supported by multiple sources of	Force is required in order to change the speed or direction of an object's motion.	outputs—and energy,
evidence consistent with scientific	Whenever an object pushes or pulls another object, it gets pushed or pulled back in the	matter, and information
ideas, principles, and theories.	opposite direction with an equal force.	flows within systems.
Apply scientific ideas or principles	Forces are equal and opposite in magnitude or strength.	
to design, construct, and/or test a		Models can represent
design of an object, tool, process or	DEVELOPING POSSIBLE SOLUTIONS	systems and their
system.	A solution needs to be tested, to prove the validity of the design and then modified on the	interactions.
	basis of the test results in order to improve it. There are systematic processes for evaluating	In many systems there
To design an object, tool, process or	solutions with respect to how well they meet the criteria and constraints of a problem.	are cycles of various
system, scientists and engineers	Sometimes parts of different solutions can be combined to create a solution that is better	types of interactions.
use scientific ideas and principles.	than any of its predecessors. Models of all kinds are important for testing solutions.	Energy flows within
To construct an object, tool,	(MS.ETS1B.a)	systems.
process or system, scientists and		Matter flows within
engineers use scientific ideas and	Design solutions must be tested.	systems.
principles.	Tests are often designed to identify failure points or difficulties.	Information flows
In science and engineering, a design	Testing a solution involves investigating how well it performs under a range of likely	within systems.
plan includes testing an object,	conditions.	
tool, process, or system.	Solutions are modified on the basis of the test results.	
	Different solutions can be combined to create a better solution.	
	Designing solutions to problems is a systematic process.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	There are many types of models.	
	Models can be used to investigate how a design might work.	
	Models allow the designer to better understand the features of a design problem.	

Examples of practical problems could include reducing the effects of impact of two objects such as two cars hitting each other, an object hitting a stationary object, or a meteor hitting a spacecraft.

6-MS-PS2-2 Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

LC-6-MS-PS2-2a Identify using provided data that a change in an object's motion is due to the mass of an object and the forces acting on that object.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	FORCES AND MOTION	STABILITY AND CHANGE
investigations: Planning and	The motion of an object is determined by the sum of the forces acting on it; if the total force	Explanations of stability
carrying out investigations to	on the object is not zero, its motion will change. The greater the mass of the object, the	and change in natural or
answer questions (science) or test	greater the force needed to achieve the same change in motion. For any given object, a larger	designed systems can be
solutions (engineering) to problems	force causes a larger change in motion (acceleration) (MS.PS2A.b)	constructed by
in 6-8 builds on K-5 experiences and		examining the changes
progresses to include investigations	Multiple forces can act on an object.	over time and forces at
that use multiple variables and	The motion of an object depends on the sum of the forces acting on it.	different scales,
provide evidence to support	If an object is moving, the total of the forces acting on it does not have a sum of zero.	including atomic scales.
explanations or solutions.	If an object is not moving, the total sum of the forces action in it is equal to zero.	
 Plan an investigation individually 	An object subject to balanced forces does not change its motion. It will continue in a	Stability is a condition
and collaboratively, and in the	straight line at the same speed.	in which some aspects
design: identify independent and	An object subject to unbalanced forces changes its motion over time.	of a system (natural or
dependent variables and controls,	Unbalanced forces cause an object to speed up, slow down, and/or change direction.	designed) are
what tools are needed to do the	The change in motion of an object is affected by the mass of the object and the size of the	unchanging.
gathering, how measurements will	force applied.	Change can be
be recorded, and how many data are needed to support a claim.	A larger force will cause a larger change in motion (acceleration) when compared to a smaller force.	observed at different scales (large and
		small/atomic) in a
Scientific investigations may be	All positions of objects and the directions of forces and motions must be described in an	system.
undertaken to support a claim.	arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share	
Scientific investigations should be planned.	information with other people, these choices must also be shared. (MS.PS2A.c)	
Scientific investigations can be	Forces and motions can be described using units.	
developed with others.	To describe the direction of forces and motions, there needs to be a reference frame or 3-	
The design plan must include what	dimensional coordinate system associated with the measurement.	
tools are needed.	To describe the position of objects, there needs to be a reference frame or 3-dimensional	
tools are fleeded.	To describe the position of objects, there needs to be a reference traine or 3-dimensional	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
The design plan must include how	coordinate system associated with the measurement.	
measurements will be recorded.	The units of measurement and reference frame must be defined.	
The design plan must include what	To share information about forces and motions with others, the units and reference frame	
kind of data must be gathered.	must be shared as well.	
The design plan must include		
experimental variables including	The motion of an object is dependent upon the reference frame of the observer. The	
independent, dependent, and controls.	reference frame must be shared when discussing the motion of an object. (MS.PS2A.d)	
	The motion of an object depends on the reference frame or 3-dimensional coordinate	
	system defined by the observer.	
	To share information about the motion of an object with others, the reference frame must	
	be shared as well.	

Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law) in one dimension to a given frame of reference, or specification of units.

6-MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

LC-6-MS-PS2-3a Identify that electricity can be used to produce magnetism, or magnetism can be used to make electricity.

LC-6-MS-PS2-3b Examine data of objects (e.g., a model that demonstrates that a piece of metal, when magnetized by electricity, can pick up many times its own weight) to identify cause and effect relationships that affect electromagnetic forces.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	TYPES OF INTERACTIONS	CAUSE AND EFFECT
problems: Asking questions	Electric and magnetic (electromagnetic) forces can be attractive (opposite charges) or	Cause and effect
(science) and defining problems	repulsive (like charges), have polar charges (north and south poles) and their sizes depend on	relationships may be
(engineering) in grades 6-8 builds	the magnitudes of the charges, currents, or magnetic strengths involved and on the distances	used to predict
from grades K-5 experiences and	between the interacting objects. (MS.PS2B.a)	phenomena in natural
progresses to specifying		or designed systems.
relationships between variables, and	Electrical energy is a form of energy that can be transferred.	
clarifying arguments and making	Some materials are magnetic and can be pushed or pulled by other magnets.	Cause and effect
models.	Electric forces can be attractive or repulsive.	relationships may be
Ask questions that can be	Magnetic forces can be attractive or repulsive.	used to predict
investigated within the scope of the	Electric forces have polar charges.	phenomena.
classroom, outdoor environment,	Magnetic forces have polar charges.	
and museums and other public	The size of electric forces depends on the magnitudes of the charges, currents, or magnetic	
facilities with available resources	strengths between the interacting objects.	
and, when appropriate, frame a	The size of magnetic forces depends on the magnitudes of the charges, currents, or	
hypothesis based on observations	magnetic strengths between the interacting objects.	
and scientific principles.	The size of electric forces depends on the distances between the interacting objects.	
	The size of magnetic forces depends on the distances between the interacting objects.	
Scientific questions can be		
investigated in a variety of ways.		
The answers to scientific questions		
can be supported with available		
resources.		
Questions can be framed by a		
hypothesis based on observations.		
Questions can be framed by a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
hypothesis based on scientific principles.		
principies:		

Questions about data might require quantitative answers related to proportional reasoning and algebraic thinking. Examples of devices that use electric and magnetic forces could include electromagnets. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.

6-MS-PS2-4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

LC-6-MS-PS2-4a Using a chart displaying the mass of those objects and the strength of interaction, compare the magnitude of gravitational force on interacting objects of different mass (e.g., the Earth and the sun)

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	TYPES OF INTERACTIONS	SYSTEMS AND SYSTEM
evidence: Engaging in argument	Gravitational forces are always attractive. There is a gravitational force between any two	MODELS
from evidence in 6-8 builds from K-5	masses, but it is very small except when one or both of the objects have large mass (e.g.,	Models can be used to
experiences and progresses to	Earth and the sun). (MS.PS2B.b)	represent systems and
constructing a convincing argument		their interactions—such
that supports or refutes claims for	Objects with mass are sources of gravitational fields and are affected by the gravitational	as inputs, processes and
either explanations or solutions	fields of all other objects with mass.	outputs—and energy,
about the natural and designed	Gravity is a force that acts between masses over very large distances.	matter, and information
world(s).	The force of gravity is always attractive.	flows within systems.
 Construct, use, and/or present an 	The force of gravity is always present.	
oral and written	The strength of the force of gravity between objects depends on the objects' masses.	Models can represent
argument supported by empirical	An object with a large mass (e.g., Earth) will cause a larger force of gravity between objects	systems and their
evidence and scientific reasoning to	when compared to an object with a small mass.	interactions.
support or refute an explanation or		In many systems there
a model for a phenomenon or a		are cycles of various
solution to a problem.		types of interactions.
		Energy flows within
Use empirical evidence to construct		systems.
an argument.		Matter flows within
Use empirical evidence to support		systems.
an argument.		Information flows
Use scientific reasoning to		within systems.
construct an argument.		
Use scientific reasoning to support		
an argument.		
Use an argument to support a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
model for a phenomena.		
Use an argument to refute a model		
for a phenomena.		
Use an argument to support a		
solution to a problem.		
Use an argument to refute a		
solution to a problem.		

Examples of evidence for arguments could include data generated from simulations or digital tools and charts displaying mass, strength of interaction, distance from the sun, or orbital periods of objects within the solar system, not necessarily including Newton's Law of Gravitation or Kepler's Laws.

6-MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

LC-6-MS-PS2-5a Evaluate a change in the strength of a force (i.e., electric and magnetic) using data.

LC-6-MS-PS2-5b Identify evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	TYPES OF INTERACTIONS	CAUSE AND EFFECT
investigations: Planning and carrying out investigations to answer questions (science) or test solutions (engineering) to problems in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions. • Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of	Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be mapped by their effect on a test object (a charged object, or a ball, respectively). (MS.PS2B.c) Forces can be used to transfer energy from one object to another. Gravitational, electric, and magnetic forces between a pair of objects do not require that they be in contact. Gravitational, electric, and magnetic forces are explained by force fields that contain energy and can transfer energy through space. Electric forces have fields that extend through space. Magnetic forces have fields that extend through space. Electric forces have fields that extend through space. Electric forces have fields that can be mapped by their effect on a test object. Magnetic forces have fields that can be mapped by their effect on a test object.	Cause and effect relationships may be used to predict phenomena in natural or designed systems. Cause and effect relationships may be used to predict phenomena.
Use data as evidence to answer scientific questions. Use data as evidence to test design solutions. Collect evidence under a range of conditions.	Gravitational forces have fields that can be mapped by their effect on a test object.	

Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, or electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations designed to provide qualitative evidence for the existence of fields.

6-MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

LC-6-MS-PS3-1a Use graphical displays of data to describe the relationship of kinetic energy to the mass of an object and to the speed of an object.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	DEFINITIONS OF ENERGY	SCALE, PROPORTION,
Analyzing data in 6-8 builds on K-5	Motion energy is properly called kinetic energy; it is proportional to the mass of the moving	AND QUANTITY
experiences and progresses to	object and grows with the square of its speed. (MS.PS3A.a)	Proportional
extending quantitative analysis to		relationships (e.g.,
investigations, distinguishing	When an object is in motion, the energy it contains is called kinetic energy.	speed as the ratio of
between correlation and causation,	The kinetic energy of an object is the energy that it possesses due to its motion.	distance traveled to
and	The kinetic energy of an object is proportional to its mass.	time taken) among
basic statistical techniques of data	Kinetic energy doubles as the mass of an object doubles.	different types of
and error analysis.	The kinetic energy of an object grows with the square of its speed. If velocity is doubled,	quantities provide
 Construct, analyze, and/or 	kinetic energy is quadrupled.	information about the
interpret graphical		magnitude of properties
displays of data and/or large data		and processes.
sets to identify		
linear and nonlinear relationships.		Ratio and
		proportionality are
Use graphical displays of data to		used in science.
identify linear relationships.		Ratio and
Use graphical displays of data to		proportionality provide
identify nonlinear relationships.		information about the
Use large data sets to identify		magnitude of
linear relationships.		properties.
Use large data sets to identify		Ratio and
nonlinear relationships.		proportionality provide
		information about the
		magnitude of
		processes.

Emphasis is on descriptive relationships between kinetic energy and mass as well as kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different masses of rocks downhill, or the impact of a wiffle ball versus a tennis ball.

6-MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

LC-6-MS-PS3-2a Describe, using models, how changing distance changes the amount of potential energy stored in the system (e.g., carts at varying positions on a hill).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	DEFINITIONS OF ENERGY	SYSTEMS AND SYSTEM
Modeling in 6-8 builds on K-5	An object or system of objects may also contain stored (potential) energy, depending on their	MODELS
experiences and progresses to	relative positions. (MS.PS3A.b)	Models can be used to
developing,		represent systems and
using and revising models to	When an object is at rest, the energy it contains is called potential energy.	their interactions—such
describe, test, and predict more	An object may contain stored (potential) energy depending on its relative position.	as inputs, processes and
abstract phenomena and design	A system of objects may contain stored (potential) energy depending on their relative	outputs—and energy,
systems.	positions.	matter, and information
 Develop a model to describe unobservable mechanisms. 	As the relative position of two objects changes, the potential energy of the system changes.	flows within systems.
	RELATIONSHIP BETWEEN ENERGY AND FORCES	Models can represent
A model can be used to describe a	When two objects interact, each one exerts a force on the other that can cause energy to be	systems.
mechanism which cannot be seen.	transferred to or from the object. (MS.PS3C.a)	In many systems there
		are cycles of various
	Whenever an object pushes or pulls another object, it gets pushed or pulled back by that	types.
	object.	Energy flows within
	Energy can be transferred to or from one object to another when they interact.	systems.
	The transfer of energy can happen when two objects interact.	Matter flows within
		systems.
		Information flows
		within systems.

Clarification Statement

Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation

of a magnet, or a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, or written descriptions of systems.

6-MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave and how the frequency and wavelength change the expression of the wave.

LC-6-MS-PS4-1a Identify how the amplitude of a wave is related to the energy in a wave using a mathematical or graphical representation.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WAVE PROPERTIES	PATTERNS
computational thinking:	A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude.	Graphs, charts, and
Mathematical and computational	(MS.PS4A.a)	images can be used to
thinking in 6-8 builds on K-5		identify patterns in data.
experiences and progresses to	A simple wave has a repeating pattern.	
identifying	A simple wave has a specific wavelength.	Graphs can be used to
patterns in large data sets and using	A simple wave has a specific frequency.	identify patterns.
mathematical concepts to support	A simple wave has a specific amplitude.	Charts can be used to
explanations and arguments.	The wavelength and frequency of a wave are related to one another by the speed of travel	identify patterns.
Use mathematical representations	of the wave.	Images can be used to
to describe and/or	The higher the frequency of the wave the shorter the wavelength.	identify patterns.
support scientific conclusions and	The lower the frequency of the wave the longer the wavelength.	
design solutions.	The higher the frequency of the wave the higher the amplitude.	
	The lower the frequency of the wave the lower the amplitude.	
Use mathematical representations		
to describe scientific conclusions.		
Use mathematical representations		
to support scientific conclusions.		
Use mathematical representations		
to describe design solutions.		
Use mathematical representations		
to support design solutions.		

Clarification Statement

Emphasis is on describing mechanical waves with both qualitative and quantitative thinking.

6-MS-PS4-2 Develop and use a model to describe that waves are refracted, reflected, absorbed, transmitted, or scattered through various materials. LC-6-MS-PS4-2a Describe, using a model, how sound waves are reflected, absorbed, or transmitted through various materials (e.g., water, air, glass). LC-6-MS-PS4-2b Describe, using a model, how light waves are reflected, absorbed, or transmitted through various materials (e.g., water, air, glass).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	WAVE PROPERTIES	STRUCTURE AND
Modeling in 6-8 builds on K-5	A sound wave needs a medium through which it is transmitted. (MS.PS4A.b)	FUNCTION
experiences and progresses to		Structures can be
developing,	Sound waves need a medium (air, water, or solid material) to travel through.	designed to serve
using, and revising models to		particular functions by
describe, test, and predict more	ELECTROMAGNETIC RADIATION	taking into account
abstract phenomena and design	When light shines on an object, it is reflected, absorbed, transmitted, or scattered through	properties of different
systems.	the object, depending on the object's material and the frequency (color) of the light.	materials, and how
Develop and/or use a model to	(MS.PS4B.a)	materials can be shaped
predict and/or describe phenomena.		and used.
	When light shines on an object, it can be reflected by the object.	
Use a model to predict phenomena.	When light shines on an object, it can be absorbed by the object.	Structures can be
Use a model to describe	When light shines on an object, it can be transmitted by the object.	designed to serve
phenomena.	When light shines on an object, it can be scattered through the object.	different functions.
Develop a model to predict	What happens to light when it shines on an object depends on the object's material.	The design of a
phenomena.	What happens to light when it shines on an object depends on the frequency (color) of the	structure must be
Develop a model to describe	light.	based on the properties
phenomena.	The selective absorption of different wavelengths of white light determines the color of	of its materials.
	most objects.	The design of a
		structure must be
	The path that light travels can be traced as straight lines, except at surfaces between different	based on its shape.
	transparent materials (e.g., air and water, air, and glass) where the light path bends	The design of a
	(Refraction). (MS.PS4B.b)	structure must be
		based on how it is being
	The path of light travels in a straight line.	used.
	The path of light bends at surfaces between different transparent materials (e.g., air and	Structure does not

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	water, air, and glass).	always determine
	Light usually refracts when passing from one material into another.	function.
		Differentiating
	A wave model of light is useful for explaining brightness, color, and the frequency-dependent	structures can have the
	bending of light at a surface between media. However, because light can travel through a	same function.
	vacuum, it cannot be a mechanical wave, like sound or water waves. (MS.PS4B.c)	
	Light can be described using a wave model.	
	A wave model of light can be used to explain its brightness.	
	A wave model of light can be used to explain its color.	
	A wave model of light can be used to explain the bending of light at a surface between	
	media.	
	Light can travel through a vacuum.	
	Light cannot be described as a mechanical wave.	
	At the surface between two media, like any wave, light can be reflected, refracted (its path	
	bent), or absorbed.	

Emphasis is on both light and mechanical waves interacting with various objects such as light striking a mirror and a water wave striking a jetty. Examples of models could include drawings, simulations, or written descriptions.

6-MS-ESS1-1 Develop and use a model of the Earth-sun-moon system to describe the reoccurring patterns of lunar phases, eclipses of the sun and moon, and seasons.

LC-6-MS-ESS1-1a Use an Earth-sun-moon model to show that the Earth-moon system orbits the sun once an Earth year and the orbit of the moon around Earth corresponds to a month.

LC-6-MS-ESS1-1b Use an Earth-sun-moon model to explain eclipses of the sun and the moon.

LC-6-MS-ESS1-1c Use an Earth-sun-moon model to explain how variations in the amount of the sun's energy hitting Earth's surface results in seasons.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	THE UNIVERSE AND ITS STARS	PATTERNS
Modeling in 6-8 builds on K-5	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed,	Patterns can be used to
experiences and progresses to	described, predicted, and explained with models. (MS.ESS1A.a)	identify cause and effect
developing, using, and revising		relationships.
models to describe, test, and predict	Earth rotates on its tilted axis once an Earth day.	
more abstract phenomena and	The moon orbits Earth approximately once a month.	Scientists use patterns
design systems.	Earth-moon system orbits the sun once an Earth year.	to identify cause and
 Develop and use a model to 	The Earth's rotation axis is tilted with respect to its orbital plane around the sun. Earth	effect relationships.
describe phenomena.	maintains the same relative orientation in space, with its North Pole pointed toward the	
	North Star throughout its orbit.	
Use a model to describe	Models can be used to explain the relationship and motion of the sun, the moon, and the	
phenomena.	stars.	
Develop a model to describe	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed.	
phenomena.	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be described.	
	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be predicted.	
	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be explained	
	with models.	
	EARTH AND THE SOLAR SYSTEM	
	This model of the solar system can explain eclipses of the sun and the moon. Earth's spin axis	
	is fixed in direction over the short term but tilted relative to its orbit around the sun. The	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year. (MS.ESS1B.b)	
	Models of the solar system can be used to explain eclipses of the sun and the moon. In the shadow of the moon that falls on Earth during a total solar eclipse, sunlight is prevented from reaching that part of Earth because the moon is located between the sun and Earth. Earth's axis is tilted relative to its orbit around the sun. As the Earth orbits around the sun, the angle at which the sun's rays strike Earth's surface changes due to the position of Earth's tilted axis relative to the sun. Different seasons are caused by the intensity of sunlight on the Earth at different times of the year. Summer occurs in the Northern Hemisphere at times in the Earth's orbit when the northern axis of Earth is tilted toward the sun. Winter occurs in the Northern Hemisphere at times in the Earth's orbit when the northern axis of Earth is tilted away from the sun.	

Earth's rotation relative to the positions of the moon and sun describes the occurrence of tides; the revolution of Earth around the sun explains the annual cycle of the apparent movement of the constellations in the night sky; the moon's revolution around Earth explains the cycle of spring/neap tides and the occurrence of eclipses; the moon's elliptical orbit mostly explains the occurrence of total and annular eclipses. Examples of models can be physical, graphical, or conceptual.

6-MS-ESS1-2 Use a model to describe the role of gravity in the motions within galaxies and the solar system.

LC-6-MS-ESS1-2a Use a model to identify the solar system as one of many systems orbiting the center of the larger system of the Milky Way galaxy, which is one of many galaxy systems in the universe.

LC-6-MS-ESS1-2b Use a model to describe the relationships and interactions between components of the solar system as a collection of many varied objects held together by gravity.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	THE UNIVERSE AND ITS STARS	SYSTEMS AND MODELS
Modeling in 6-8 builds	Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in	Models (e.g., physical,
on K-5 experiences and progresses	the universe. (MS.ESS1A.b)	mathematical,
to developing,		computer models) can
using, and revising models to	Earth is a part of the solar system.	be used to represent
describe, test, and predict	The solar system is part of the Milky Way galaxy.	systems and their
more abstract phenomena and	The Milky Way galaxy is one of many galaxies in the universe.	interactions—such as
design systems.	There are many other galaxies in the universe, each containing many other stars.	inputs, processes and
Develop and/or use a model to		outputs—and energy,
predict and/or	EARTH AND THE SOLAR SYSTEM	matter, and information
describe phenomena.	The solar system consists of the sun and a collection of objects, including planets, their	flows within systems.
	natural satellite(s) (moons), and asteroids that are held in orbit around the sun by its	
Use a model to predict phenomena.	gravitational pull on them. (MS.ESS1B.a)	Models can represent
Use a model to describe		systems.
phenomena.	The solar system contains the sun, planets, moons, and asteroids.	In many systems there
Develop a model to predict	The solar system is held together by the sun's gravitational force.	are cycles of various
phenomena.	The sun's gravity keeps all planets in a predictable orbit around it.	types.
Develop a model to describe	The gravitational forces from the center of the Milky Way cause stars and stellar systems to	Energy flows within
phenomena.	orbit around the center of the galaxy.	systems.
		Matter flows within
	The solar system appears to have formed from a disk of dust and gas, drawn together by	systems.
	gravity. (MS.ESS1B.c)	Information flows
		within systems.
	The solar system formed from dust and gas.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	The components of the solar system are drawn together by gravity.	
	The result was the formation of moon-planet and planet-sun orbiting systems.	

Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as their school or state).

6- MS-ESS1-3 Analyze and interpret data to determine scale properties of objects in the solar system.

LC-6-MS-ESS1-3a Use data (e.g., statistical information, drawings and photographs, and models) to determine similarities and differences among solar system objects.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EARTH AND THE SOLAR SYSTEM	SCALE, PROPORTION,
Analyzing data in 6-8 builds on K-5	The solar system consists of the sun and a collection of objects, including planets, their	AND QUANTITY
experiences and progresses to	natural satellite(s) (moons), comets, and asteroids that are held in orbit around the sun by its	Time, space, and energy
extending quantitative analysis to	gravitational pull on them. (MS.ESS1B.a)	phenomena can be
investigations, distinguishing		observed at various
between correlation and causation,	The solar system contains the sun, planets, moons, and asteroids.	scales using models to
and basic statistical techniques of	The solar system is held together by the sun's gravitational force.	study systems that are
data and error analysis.	The sun's gravity keeps all planets in a predictable orbit around it.	too large or too small.
 Analyze and interpret data to 	The gravitational forces from the center of the Milky Way cause stars and stellar systems to	
determine similarities and	orbit around the center of the galaxy.	Phenomena can be
differences in findings.		observed at different
		scales (micro and
Use data to determine similarities		macro) in a system.
in findings.		Phenomena can be
Use data to determine differences		studied using models.
in findings.		Models can be used to
		explain time, space, and
		energy phenomena.

Clarification Statement

Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), atmospheric composition, surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.

6-MS-ESS3-4 Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

LC-6-MS-ESS3-4 Identify changes that human populations have made to Earth's natural systems using a variety of resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	HUMAN IMPACTS ON EARTH SYSTEMS	CAUSE AND EFFECT
evidence: Engaging in argument	Typically as human populations and per-capita consumption of natural resources increase, so	Cause and effect
from evidence in 6-8 builds on K-5	do the negative impacts on Earth unless the activities and technologies involved are	relationships may be
experiences and progresses to	engineered otherwise. (MS.ESS3C.b)	used to predict
constructing a convincing argument		phenomena in natural
that supports or refutes claims for	As the human population grows, so does the consumption of natural resources.	or designed systems.
either explanations or solutions	As the human population grows, so do the human impacts on the planet.	
about the natural and designed	People impact the environment by:	Cause and effect
world(s).	• poor agricultural practices (e.g., wasteful water),	relationships may be
 Construct, use, and/or present an 	• polluting the air, water, and ground,	used to predict
oral and written argument	• tourism and recreational development (e.g., ski resorts, golf courses), and	phenomena.
supported by empirical evidence	• clearing forests and grasslands for cities.	
and scientific reasoning to support	People can minimize the impact on the environment by:	
or refute an explanation or a model	• practicing proper agriculture (e.g., rotating crops),	
for a phenomenon or a solution to a	• reusing, reducing, and recycling materials,	
problem.	• natural resource management,	
	• conserving water and electricity, and	
Use empirical evidence to construct	maintaining some forest and grassland areas.	
an argument.	Some negative effects of human activities are reversible using technology.	
Use empirical evidence to support	The sustainability of human societies and of the biodiversity that supports them requires	
an argument.	responsible management of natural resources.	
Use scientific reasoning to		
construct an argument.	BIOGEOLOGY	
Use scientific reasoning to support an argument.	Living organisms interact with Earth materials resulting in changes of the Earth. (MS.ESS2E.a)	
Use an argument to support a	Living things have changed the makeup of Earth's geosphere, hydrosphere, and atmosphere	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
model for a phenomena.	over geological time.	
Use an argument to refute a model	The flow of water can be affected by living organisms.	
for a phenomena.	Ground cover can be affected by living organisms.	
Use an argument to support a	The slope of the land can be affected by living organisms.	
solution to a problem.		
Use an argument to refute a	RESOURCE MANAGEMENT FOR LOUISIANA	
solution to a problem.	Responsible management of Louisiana's natural resources promotes economic growth, a	
	healthy environment, and vibrant productive ecosystems. (MS.EVS1B.a)	
	Responsible management of Louisiana's natural resources helps create economic growth.	
	Responsible management of Louisiana's natural resources helps create a healthy environment.	
	Responsible management of Louisiana's natural resources helps sustain vibrant productive	
	ecosystems.	

Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions.

6-MS-LS1-1 Conduct an investigation to provide evidence that living things are made of cells, either one or many different numbers and types. LC-6-MS-LS1-1a Identify that living things may be made of one cell or many different numbers and types of cells.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND FUNCTION	SCALE, PROPORTION,
investigations: Planning and	All living things are made up of cells, which are the smallest living unit. An organism may	AND QUANTITY
carrying out investigations to	consist of one single cell (unicellular) or many different numbers and types of cells	Phenomena that can be
answer questions (science) or test	(multicellular). (MS.LS1A.a)	observed at one scale
solutions (engineering) to problems		may not be observable
in 6-8 builds on K-5 experiences and	All living things are made up of cells.	at another scale.
progresses to include investigations	The cell is the smallest living unit.	
that use multiple variables and	The cell is the fundamental unit of life.	Different phenomena
provide evidence to support	An organism can consist of a single cell.	correspond to different
explanations or solutions.	An organism can consist of many cells.	scales.
 Conduct an investigation and/or 	An organism can consist of many different types of cells.	Some phenomena are
evaluate and/or revise the	Single-celled organisms are composed of one cell that can survive independently.	observable at some
experimental design to produce	Multi-cellular organisms consist of individual cells that cannot survive independently.	scales.
data to serve as the basis for		Some phenomena
evidence that meet the goals of the		cannot be observed at
investigation.		certain scales.
Conduct an investigation to		
produce data to meet its goals.		
<u> </u>		
_		
Evaluate the experimental design to ensure it meets its goals. Revise the experimental design to ensure it meets it goals. Data may serve as evidence that an investigation has met its goals.		

Emphasis is on developing evidence that living things are made of cells, distinguishing between living and nonliving things, and understanding that living things may be made of one or many cells, including specialized cells. Examples could include animal cells (blood, muscle, skin, nerve, bone, or reproductive) or plant cells (root, leaf, or reproductive).

6-MS-LS1-2 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

LC-6-MS-LS1-2a Using a model(s), identify the function of a cell as a whole.

LC-6-MS-LS1-2b Using a model(s), identify special structures within cells are responsible for particular functions.

LC-6-MS-LS1-2c Using a model(s), identify the components of a cell.

LC-6-MS-LS1-2d Using a model(s), identify the functions of components of a cell.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND FUNCTION	STRUCTURE AND
Modeling in 6-8 builds on K-5	Within cells, special structures (organelles) are responsible for particular functions. The cell	FUNCTION
experiences and progresses to	membrane forms the boundary that controls the material(s) that enter and leave the cells in	Complex and
developing, using, and revising	order to maintain homeostasis. (MS.LS1A.b)	microscopic structures
models to describe, test, and predict		and systems can be
more abstract phenomena and	Organelles are structures within cells.	visualized, modeled, and
design systems.	Most cells contain a set of observable structures called organelles which allow them to	used to describe how
Develop and/or use a model to	carry out life processes.	their function depends
predict and/or	Organelles perform specific functions.	on the shapes,
describe phenomena.	A living cell depends on its organelles to function properly.	composition, and
	Major organelles include vacuoles, cell membrane, nucleus, and mitochondria.	relationships among its
Models can be used to describe	Plant cells are structurally and functionally different from animal cells.	parts; therefore,
phenomena.	Plants contain organelles such as cell wall and chloroplasts that are not found in animal	complex natural and
Models can be used to predict	cells.	designed
phenomena.	A cell membrane surrounds every cell.	structures/systems can
	The cell membrane controls what goes in and out of a cell.	be analyzed to
	Plant cells have a cell wall in addition to a cell membrane, whereas animal cells have only a	determine how they
	cell membrane. Plants use cell walls to provide structure to the plant.	function.
	A living cell maintains stable internal conditions (homeostasis) despite changes in its	
	surroundings.	Complex structures can
	The functions of the organelles contribute to the cell's overall function as a whole (e.g.,	be visualized.
	maintain the cells internal processes, the structure of the cell, what enters and leaves the	Microscopic structures
	cell, and overall cellular function).	can be visualized.
		Complex structures can
		be modeled.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
		Microscopic structures
		can be modeled.
		The function of a
		structure depends on
		its shape.
		The function of a
		structure depends on
		its composition.
		The function of a
		structure depends on
		relationships among its
		parts.
		Designed
		structures/systems can
		be analyzed to
		determine how they
		function.

Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, such as the nucleus, chloroplasts, mitochondria, cell membrane, or cell wall.

6-MS-LS2-1 Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. LC-6-MS-LS2-1a Recognize data that shows growth of organisms and population increases are limited by access to resources.

LC-6-MS-LS2-1b Identify factors (e.g., resources, climate or competition) in an ecosystem that influence growth in populations of organisms.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	CAUSE AND EFFECT
Analyzing data in 6-8 builds on K-5	Organisms, and populations of organisms, are dependent on their environmental interactions	Cause and effect
experiences and progresses	both with other living things and with nonliving factors. (MS.LS2A.a)	relationships may be
extending quantitative analysis to		used to predict
investigations, distinguishing	In any ecosystem, there are physical and biological factors.	phenomena in natural
between correlation and causation,	All living organisms interact with the living and nonliving parts of their surroundings to	or designed systems.
and basic statistical techniques of	meet their needs for survival.	
data and error analysis.	Organisms are dependent on other living things.	Cause and effect
Analyze and interpret data to	Organisms are dependent on nonliving factors.	relationships may be
provide evidence for phenomena.	Populations are dependent on other living things.	used to predict
	Populations are dependent on nonliving factors.	phenomena.
Interpret data to provide evidence	The size of populations may change as a result of the interrelationships among organisms.	
for phenomena.		
Analyze data to provide evidence	In any ecosystem, organisms and populations with similar requirements for food, water,	
for phenomena.	oxygen, or other resources may compete with each other for limited resources, access to	
	which consequently constrains their growth and reproduction. (MS.LS2A.b)	
	A population consists of all individuals of a species that occur together at a given place and time.	
	All populations living together (biotic factors) and the physical factors with which they interact (abiotic factors) compose an ecosystem.	
	Organisms and populations cope with the physical conditions of their immediate surroundings.	
	Organisms may compete with other organisms for resources (e.g., food, water, oxygen, shelter).	
	Availability of resources (e.g., food, water, oxygen, shelter) can lead to changes in	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	populations. Access to resources is needed for organisms to grow and reproduce.	
	Growth of organisms and population increases are limited by access to resources. (MS.LS2A.c)	
	Growth of organisms are limited by access to resources. Population increases are limited by access to resources. In order to survive, populations within an ecosystem require a balance of resources.	

Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant or scarce resources.

6-MS-LS2-2 Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. LC-6-MS-LS2-2a Use an explanation of interactions between organisms in an ecosystem to identify examples of competitive, predatory, or symbiotic relationships.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	PATTERNS
designing solutions: Constructing	Predatory interactions may reduce the number of organisms or eliminate whole populations	Patterns can be used to
explanations (science) and designing	of organisms. Mutually beneficial interactions, in contrast, may become so interdependent	identify cause and
solutions (engineering) in 6-8 builds	that each organism requires the other for survival. Although the species involved in these	effect relationships.
on K- 5 experiences and progresses	competitive, predatory, and mutually beneficial interactions vary across ecosystems, the	
to include constructing explanations	patterns of interactions of organisms with their environments, both living and nonliving, are	Scientists use patterns
and designing solutions supported	shared. (MS.LS2A.d)	to identify cause and
by multiple sources of evidence		effect relationships.
consistent with scientific ideas,	A predatory species can reduce the number of organisms in a population.	
principles, and theories.	A predatory species can eliminate whole populations.	
Construct an explanation that	Predator/Prey relationships can have a negative correlation.	
includes qualitative	Different organisms may be interdependent on each other for survival.	
or quantitative relationships	When organisms depend on each other, it is called a mutually beneficial interaction.	
between variables that	The species in these cause and effect relationships (competitive, predatory, and mutually	
predict(s) and/or describe(s)	beneficial) vary across ecosystems.	
phenomena.	Patterns can be observed in these cause and effect relationships (competitive, predatory,	
	and mutually beneficial) across ecosystems.	
Construct an explanation that	Organisms within an ecosystem may interact symbiotically through mutualism, parasitism,	
includes qualitative relationships to	and commensalism.	
predict a phenomena.		
Construct an explanation that		
includes qualitative relationships to		
describe a phenomena.		
Construct an explanation that		
includes quantitative relationships		
to predict a phenomena.		
Construct an explanation that		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
includes quantitative relationships		
to describe a phenomena.		

Emphasis is on (1) predicting consistent patterns of interactions in different ecosystems and (2) relationships among and between biotic and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, mutually beneficial, or other symbiotic relationships.

6-MS-LS2-3 Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

LC-6-MS-LS2-3a Using a model(s), describe energy transfer between producers and consumers in an ecosystem using a model (e.g., producers provide energy for consumers).

LC-6-MS-LS2-3b Using a model(s), describe the cycling of matter among living and nonliving parts of a defined system (e.g., the atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	CYCLE OF MATTER AND ENERGY TRANSFER IN ECOSYSTEMS	ENERGY
Modeling in 6-8 builds on K-5	Food webs are models that demonstrate how matter and energy is transferred between	The transfer of energy
experiences and progresses to	producers, consumers, and decomposers as the three groups interact within an ecosystem.	can be tracked as
developing, using, and revising	(MS.LS2B.a)	energy flows through a
models to describe, test, and predict		designed or natural
more abstract phenomena and	Matter and energy cycle through both living and non-living parts of ecosystems.	system.
design systems.	Matter and energy are transferred between producers, consumers, and decomposers within	
 Develop and/or use a model to 	an ecosystem.	Energy cannot be
predict and/or describe phenomena.	In most ecosystems, energy enters as sunlight and is transformed by producers into a	created or destroyed.
	biologically usable form of matter through photosynthesis.	Energy can be
Models can be used to describe	Food webs are models that show how matter and energy is transferred within and across	transferred.
phenomena.	groups of organisms in an ecosystem.	Energy flows through
Models can be used to predict	Some animals are herbivores, eat plants and algae.	systems (natural and
phenomena.	Some animals are omnivores, eat plants and/or animals.	designed).
	Some animals are carnivores, which eat animals that have eaten photosynthetic organisms.	
	Transfers of matter into and out of the physical environment occur at every level. (MS.LS2B.b)	
	Matter cycles through living systems and between living systems and the physical environment.	
	Over time, matter is transferred repeatedly from one organism to another and between	
	organisms and their physical environment.	
	When a consumer eats a producer, matter is transferred.	
	When a producer or consumer decomposes, matter is transferred.	
	When a consumer eats a consumer, matter is transferred.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. (MS.LS2B.c)	
	Dead plants and animals are broken down by decomposers. Decomposers recycle nutrients and material back into the soil in terrestrial environments. Decomposers recycle nutrients and material back into the water in aquatic environments. Food webs recycle matter continuously as organisms are decomposed after death to return food materials to the environment where it re-enters a food web.	
	The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. Geochemical cycles include carbon, nitrogen, and the water cycle. (MS.LS2B.d)	
	Living things are composed of atoms. All the atoms that make up organisms are repeatedly cycled between living and nonliving parts of the ecosystem. The total amount of matter remains constant, even though its form and location change. Matter and energy continually cycle through Earth's geochemical cycles (carbon, nitrogen, and the water cycle).	

Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.

7-MS-PS1-2 Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

LC-7-MS-PS2-1a Using data, identify changes that occur after a chemical reaction has taken place (e.g., change in color occurs, gas is created, heat or light is given off or taken in).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
Analyzing data in 6-8 builds on K-5	Each pure substance has characteristic physical and chemical properties (for any bulk quantity	Macroscopic patterns
experiences and progresses to	under given conditions) under normal conditions that can be used to	are related to the
extending quantitative analysis to	identify it. (MS.PS1A.b)	nature of microscopic
investigations, distinguishing		and atomic-level
between correlation and causation,	Pure substances are made from a single type of atom or molecule.	structure.
and basic statistical techniques of	Elements and compounds are pure substances.	
data and error analysis.	Pure substances have characteristics (physical and chemical properties) that are used to	Patterns can be related
 Analyze and interpret data to 	identify them.	to microscopic and
determine similarities		atomic-level structures.
and differences in findings.	CHEMICAL REACTIONS	For example, chemical
	Substances react chemically in characteristic ways. In a chemical process, the atoms that	molecules contain
Use data to determine similarities	make up the original substances are regrouped into different molecules, and these new	particular ratios of
in findings.	substances have different properties from those of the reactants. (MS.PS1B.a)	different atoms.
Use data to determine differences		Macroscopic patterns
in findings.	Substances react in characteristic ways.	are determined by
	When a chemical reaction occurs, the parts that make up the original substance are	microscopic and atomic
	regrouped in a new way that makes a new substance with new properties.	level structures.
	If atoms are rearranged, the ending result is a different substance.	
	Many substances react chemically with other substances to form new substances with	
	different properties.	

Clarification Statement

Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, or mixing zinc with hydrogen chloride. Examples of chemical and physical properties to analyze include density, melting point, boiling point, solubility, flammability, or odor.

Performance Expectation and Louisiana Connectors

7-MS-PS1-4 Develop a model that predicts and describes changes in particle motion, temperature, and the state of a pure substance when thermal energy is added or removed.

LC-7-MS-PS1-4a Use drawings and diagrams to Identify that adding or removing thermal energy increases or decreases particle motion until a change of state occurs.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	CAUSE AND EFFECT
Modeling in 6-8 builds on K-5	Gases and liquids are made of molecules or inert atoms (the noble gases) that are moving	Cause and effect
experiences and progresses to	about relative to each other. (MS.PS1A.c)	relationships may be
developing, using and revising		used to predict
models to describe, test, and predict	Gases and liquids are made of molecules, which are always moving.	phenomena in natural
more abstract phenomena and	In the liquid state, particles are loosely packed and move past each other.	or designed systems.
design systems.	In a gaseous state, particles freely move past one another.	
Develop and/or use a model to	As the temperature in a system increases, solid, liquid, and gas molecules increase in speed.	Cause and effect
predict and/or describe phenomena.	As the temperature in a system decreases, solid, liquid, and gas molecules decrease in speed.	relationships may be used to predict
Models, such as drawings and		phenomena.
diagrams, can be used to describe	In a liquid, the molecules are constantly in motion and in contact with others; in a gas, they	
phenomena.	are widely spaced except when they happen to collide. In a solid, atoms are closely spaced	
Models can be used to predict phenomena.	and may vibrate in position but do not change relative locations. (MS.PS1A.d)	
	The molecules in a liquid are always in motion and in contact with other molecules.	
	The molecules in a gas are widely spaced.	
	The molecules in a solid are closely spaced. A solid's molecules may vibrate, but they do not change position.	
	Particles in all three states are in constant motion.	
	The changes of state that occur with variations in temperature or pressure can be described	
	and predicted using temperature and pressure models of matter. (MS.PS1A.f)	
	Heating and cooling of materials may produce changes in the state of solids, liquids, and	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	gases. The state of matter is determined by the temperature and pressure of a substance. The state of matter can be predicted using temperature and pressure models. A phase change may occur when a material absorbs or releases heat energy. Changes in phase do not change the particles but do change how they are arranged.	
	The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (MS.PS.3A.c)	
	Temperature is a measure of how fast particles are moving inside of a substance (i.e., the energy a substance contains). Matter at any temperature above absolute zero contains thermal energy. Thermal energy is the random motion of particles. The amount of matter in a system will affect the amount of energy needed to change the temperature of the matter.	
	The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (MS.PS3A.e)	
	The term heat, in science, refers to the transfer of thermal energy.	

Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings or diagrams. Examples of particles could include molecules or inert atoms such as the noble gases. Examples of pure substances could include water, carbon dioxide, or helium.

7-MS-PS1-5 Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. LC-7-MS-PS1-5a Use a model to identify a chemical reaction in which the mass of the reactants is shown to be equal to the mass of the products. LC-7-MS-PS1-5b Use a model to show how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	CHEMICAL REACTIONS	ENERGY AND MATTER
Modeling in 6-8 builds on K-5	Substances react chemically in characteristic ways. In a chemical process, the atoms that	Matter is conserved
experiences and progresses to	make up the original substances are regrouped into different molecules, and these new	because atoms are
developing,	substances have different properties from those of the reactants. (MS.PS1B.a)	conserved in physical
using and revising models to		and chemical processes.
describe, test, and predict more	Substances react in characteristic ways.	
abstract phenomena and design	Chemical reactions result in new substances with properties that are different from those of	Matter is conserved
systems.	the component parts.	because the original
Develop a model to describe	When a chemical reaction occurs, the parts that make up the original substance are	number of atoms before
unobservable mechanisms.	regrouped in a new way that makes a new substance with new properties.	a reaction occurs
	If atoms are rearranged, the ending result is a different substance.	(product) is the same as
A model, such as a drawing or	Many substances react chemically with other substances to form new substances with	the number of atoms
illustration, can be used to describe	different properties.	after the reaction
a mechanism which cannot be seen.		occurs (reactant).
	The total number of each type of atom is conserved, and thus the mass does not change.	
	(MS.PS1B.b)	
	Matter cannot be created or destroyed.	
	During a chemical reaction and rearrangement, all the atoms are accounted for and none	
	are lost.	
	The atoms are just in a new configuration and the total number of atoms present before the	
	reaction is equal to the number of atoms after the reaction.	
	The total mass of the mixture is equal to the sum of the masses of the components.	
	Total mass is conserved when different substances are mixed.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	When materials interact within a closed system, the total mass of the system remains the	
	same.	

Emphasis is on the law of conservation of matter and on physical models or drawings, including digital forms that represent atoms. The use of atomic masses, balancing symbolic equations, or intermolecular forces is not the focus of this performance expectation.

7-MS-PS3-4 Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

LC-7-MS-PS3-4a Using examples and data measurements, describe the relationship between different masses of the same substance and the change in average kinetic energy when thermal energy is added to or removed from the system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	DEFINITIONS OF ENERGY	SCALE, PROPORTION,
investigations: Planning and	Temperature is a measure of the average kinetic energy; the relationship between the	AND QUANTITY
carrying out investigations to	temperature and the total energy of the system depends on the types, states, and amounts of	Proportional
answer questions or test solutions	matter present. (MS.PS3A.d)	relationships (e.g.,
to problems in 6-8 builds on K-5		speed as the ratio of
experiences and progresses to	Temperature is a measurement used to determine how fast the particles are moving inside	distance traveled to
include investigations that use	of a substance or how much energy the substance contains.	time taken) among
multiple variables and provide	The temperature of matter is a measurement of the matter's average kinetic energy.	different types of
evidence to support explanations or	The state, amount of substance, and the type of substance will all affect the total amount of	quantities provide
solutions.	energy it has.	information about the
 Plan an investigation individually 		magnitude of properties
and collaboratively, and in the	CONSERVATION OF ENERGY AND ENERGY TRANSFER	and processes.
design: identify independent and	The amount of energy transfer needed to change the temperature of a matter sample by a	
dependent variables and controls,	given amount depends on the nature of the matter, the mass of the sample, and the	Ratio and
what tools are needed to do the	environment. (MS.PS3B.b)	proportionality are used
gathering, how measurements will		in science.
be recorded, and how many data	The amount of matter in a system will affect the amount of energy needed to change the	Ratio and
are needed to support a claim.	temperature of the matter.	proportionality provide
	The type of matter in a system will affect the amount of energy needed to change the	information about the
Scientific investigations may be	temperature of the matter.	magnitude of
undertaken to support a claim.	The environment of a system will affect the amount of energy needed to change the	properties.
Scientific investigations should be	temperature of the matter.	Ratio and
planned.		proportionality provide
Scientific investigations can be	Energy is spontaneously transferred out of hotter regions or objects and into colder ones.	information about the
developed with others.	(MS.PS3B.c)	
The design plan must include what		

Disciplinary Core Idea	Crosscutting Concept
Energy is transferred out of hotter regions into colder ones.	magnitude of
Energy is transferred out of hotter objects into colder ones.	processes.
Heat energy transfers from warmer substances to cooler substances until they reach the	
same temperature.	
	Energy is transferred out of hotter regions into colder ones. Energy is transferred out of hotter objects into colder ones. Heat energy transfers from warmer substances to cooler substances until they reach the

Emphasis is on observing change in temperature as opposed to calculating total thermal energy transferred. Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.

7-MS-ESS2-4 Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. LC-7-MS-ESS2-4a Using a model(s), identify components in a model of water cycling among land, ocean, and atmosphere, and recognize how it is propelled by sunlight and gravity.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	THE ROLES OF WATER IN EARTH'S SURFACE PROCESSES	ENERGY AND MATTER
Modeling in 6-8 builds on K-5	Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation,	Within a natural or
experiences and progresses to	condensation and crystallization, and precipitation, as well as downhill flows on land.	designed system, the
developing, using, and revising	(MS.ESS2C.a)	transfer of energy drives
models to describe, test, and predict		the motion and/or
more abstract phenomena and design systems.	Through the water cycle, water is cycled and recycled through both the living and non-living components of Earth's ecosystems.	cycling of matter.
 Develop a model to describe 	Water cycles through transpiration, evaporation, condensation, crystallization, and	Energy can be
unobservable mechanisms.	precipitation, as well as downhill flows on land through run-off and groundwater.	transferred.
	Water within a watershed travels over and through the land at various speeds based on the	Energy transfer drives
A model can be used to describe a	rate of change in elevation and the permeability and porosity of the soil.	the motion of matter
mechanism which cannot be seen.		through systems
	Global movements of water and its changes in form are propelled by sunlight and gravity.	(natural and designed).
	(MS.ESS2C.c)	Energy transfer drives
		the cycling of matter
	Energy from the sun and the force of gravity drive the continual cycling of water.	through systems
	Sunlight causes evaporation and propels oceanic and atmospheric circulation.	(natural and designed).
	Gravity causes precipitation to fall from clouds and water to flow downward on the land.	
	LOUISIANA'S NATURAL RESOURCES	
	Replenishable resources such as groundwater and oxygen are purified by the movement	
	through Earth's cycles. (MS.EVS1A.c)	
	As water moves Earth's cycles, it is purified (e.g., groundwater).	
	As oxygen moves through Earth's cycles, it is purified.	

Emphasis is on the ways water changes its state and location as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.

7-MS-ESS2-5 Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

LC-7-MS-ESS2-5a Using data, identify how water influences weather and weather patterns through atmospheric, land, and oceanic circulation.

LC-7-MS-ESS2-5b Using data, identify examples of how the sun drives all weather patterns on Earth (e.g., flow of energy that moves through Earth's land, air, and water).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	THE ROLES OF WATER IN EARTH'S SURFACE PROCESSES	CAUSE AND EFFECT
investigations: Planning and	The complex patterns of the changes and the movement of water in the atmosphere,	Cause and effect relationships
carrying out investigations to	determined by winds, landforms, and ocean temperatures and currents, are major	may be used to predict
answer questions (science) or	determinants of local weather patterns. (MS.ESS2C.b)	phenomena in natural or
test solutions (engineering) to		designed systems.
problems in 6-8 builds on K-5	Local weather at any point in time varies at different locations around the world.	
experiences and progresses to	Weather can change in a short amount of time.	Cause and effect relationships
include investigations that use	Factors such as air pressure, temperature, humidity, precipitation, and wind can cause	may be used to predict
multiple variables and provide	weather changes and weather patterns.	phenomena.
evidence to support	Some weather events, such as snowstorms, hurricanes, thunderstorms or tornadoes are more	
explanations or solutions.	likely to occur at different times of the year.	
Collect data to produce data		
to serve as the basis for	WEATHER AND CLIMATE	
evidence to answer scientific	Weather and climate are influenced by interactions involving sunlight, the ocean, the	
questions or test design	atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude,	
solutions under a range of	and local and regional geography, all of which can affect oceanic and atmospheric flow patterns.	
conditions.	Because these patterns are so complex, weather can only be predicted probabilistically.	
	(MS.ESS2D.a)	
Use data to answer scientific		
questions.	The sun drives all weather patterns on Earth.	
Use data to test design	Sunlight heats Earth's surface, which in turn heats the atmosphere.	
solutions.	The sun's energy heats Earth's surface, and the surface heats the air above it.	
Collect data across a range of	The sun's energy heats Earth's surface unevenly.	
conditions.	The ocean exerts a major influence on weather and climate.	
	The ocean moderates and stabilizes global climates.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Differences in latitude, altitude, and local and regional geography can cause different types of weather. The climate at a location on Earth is the result of several interacting variables such as latitude, altitude, regional geography, and/or proximity to water. Weather can be predicted, but weather forecasting has not been perfected. Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosp here, ice, landforms, and living things.	

Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as condensation).

7-MS-ESS2-6 Develop and use a model to describe how unequal heating and rotation of the Earth causes patterns of atmospheric and oceanic circulation that determine regional climates.

7-MS-ESS2-6a Using a model(s), identify that as the sun's energy warms the air over the land (expands and rises), the air over the ocean (cooler air) rushes in to take its place and is called wind (sea breeze).

7-MS-ESS2-6b Using a model(s), identify that weather and climate vary with latitude, altitude, and regional geography.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	THE ROLES OF WATER IN EARTH'S SURFACE PROCESSES	SYSTEMS AND SYSTEM
Modeling in 6-8 builds on K-5	Variations in density due to variations in temperature and salinity drive a global pattern of	MODELS
experiences and progresses to	interconnected ocean currents. (MS.ESS2C.d)	Models can be used to
developing, using, and revising		represent systems and
models to describe, test, and predict	The movement of water among the geosphere, hydrosphere, and atmosphere affects such	their interactions—such
more abstract phenomena and	things as weather systems, ocean currents, and global climate.	as inputs, processes and
design systems.	Ocean currents and sea surface temperature are directly related to global climate patterns.	outputs—and energy,
Develop and use a model to	Ocean currents are the result of variations in the ocean's density.	matter, and information
describe phenomena.	The density of different regions of the ocean is due to temperature and salinity variations.	flows within systems.
Use a model to describe	WEATHER AND CLIMATE	Models can represent
phenomena.	Weather and climate are influenced by interactions involving sunlight, the ocean, the	systems.
Develop a model to describe	atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude,	In many systems there
phenomena.	and local and regional geography, all of which can affect oceanic and atmospheric flow	are cycles of various
	patterns. Because these patterns are so complex, weather can only be predicted	types.
	probabilistically. (MS.ESS2D.a)	Energy flows within
		systems.
	The sun drives all weather patterns on Earth.	Matter flows within
	Sunlight heats Earth's surface, which in turn heats the atmosphere.	systems.
	The ocean exerts a major influence on weather and climate.	Information flows
	The ocean moderates and stabilizes global climates.	within systems.
	Differences in latitude, altitude, and local and regional geography can cause different types of weather.	
	The climate at a location on Earth is the result of several interacting variables such as	
	latitude, altitude, regional geography, and/or proximity to water.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Weather can be predicted, but weather forecasting has not been perfected.	
	The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents. (MS.ESS2D.b)	
	The ocean absorbs and stores large amounts of energy from the sun and releases it very slowly.	
	The ocean's thermal capacity contributes to moderating temperature variations around the globe.	
	Energy is redistributed globally through ocean currents.	
	Ocean currents can redistribute energy from the sun, which can affect regional climates.	

Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation (e.g. el Niño/la Niña) is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.

7-MS-ESS3-5 Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

LC-7-MS-ESS3-5a Identify evidence of the effects of human activities on changes in global temperatures over the past century using a variety of resources (e.g., tables, graphs, and maps of global and regional temperatures; atmospheric levels of gases, such as carbon dioxide and methane; and rates of human activities).

LC-7-MS-ESS3-5b Using a variety of resources, ask questions or make observations about how the effects of human activities have changed global temperatures.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	GLOBAL CLIMATE CHANGE	STABILITY AND CHANGE
problems: Asking questions	Human activities, such as the release of greenhouse gases from burning fossil fuels, are major	Stability might be
(science) and defining problems	factors in the current rise in Earth's mean surface temperature. Addressing climate change	disturbed either by
(engineering) in 6-8 builds on K-5	and reducing human vulnerability to whatever climate changes do occur depend on the	sudden events or
experiences and progresses to	understanding of climate science, engineering capabilities, and other kinds of knowledge,	gradual changes that
specifying relationships between	such as understanding of human behavior and on applying that knowledge wisely in decisions	accumulate over time.
variables, clarifying arguments and	and activities. (MS.ESS3D.a)	
making models.		Stability can be
 Ask questions to identify and/or 	Heat energy stored in the oceans and transferred by currents influence climate.	disturbed by sudden
clarify evidence and/	A disruption of the circulation and temperature of the world's oceans would foster climate	events.
or the premise(s) of an argument.	change and have environmental and economic consequences.	Stability can be
	Global climate change is driven by both natural phenomena and by human activities.	disturbed by an
Ask questions to identify the	Global climate change could have large consequences for all of Earth's surface systems.	accumulation of
premise of an argument.	With further scientific research, people can learn more about climate changes and help	gradual changes.
Ask questions to clarify the premise	guide more effective responses.	
of an argument.	Using science-based predictive models, humans can anticipate long-term change more	
Ask questions to identify evidence.	effectively and plan accordingly.	
Ask questions to clarify evidence.		

Clarification Statement

Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures,

atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.)

7-MS-LS1-3 Use an argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

LC-7-MS-LS1-3a Identify that the body is a system of multiple interacting subsystems.

LC-7-MS-LS1-3b Identify evidence which supports a claim about how the body is composed of various levels of organization for structure and function which includes cells, tissues, organs, organ systems, and organisms using models or diagrams.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	STRUCTURE AND FUNCTION	SYSTEMS AND SYSTEM
evidence: Engaging in argument	In multicellular organisms, the body is a system of multiple interacting subsystems. These	MODELS
from evidence in 6-8 builds on K-5	subsystems are groups of cells that work together to form tissues and organs that are	Systems may interact
experiences and progresses to	specialized for particular body functions in order to maintain homeostasis. (MS.LS1A.c)	with other systems; they
constructing a convincing argument		may have subsystems
that supports or refutes claims for	In multicellular organisms, groups of cells work together to perform tasks and are called	and be a part of larger
either explanations or solutions	tissues.	complex systems.
about the natural and designed	Groups of tissues may work together to form organs.	
world(s).	Organs work together as systems to perform particular functions in the body.	Systems may work with
 Construct, use, and/or present an 	The body systems work together to maintain stable conditions (homeostasis) in the body.	other systems.
oral and written argument	The human body has systems that perform functions necessary for life.	Systems can be made of
supported by empirical evidence	Major systems of the human body include the digestive, respiratory, reproductive, and	smaller subsystems.
and scientific reasoning to support	circulatory systems, etc.	A system can be a part
or refute an explanation or a model		of a larger system.
for a phenomenon or a solution to a	INFORMATION PROCESSING	
problem.	Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical),	
	transmitting them as signals that travel along nerve cells to the brain. The signals are then	
Construct an argument to support	processed in the brain, resulting in immediate behaviors or memories. (MS.LS1D.a)	
or refute an explanation, model, or		
solution to a problem.	An organism's ability to sense and respond to its environment enhances its chance of	
Use an argument to support or	surviving and reproducing.	
refute an explanation, model, or	Animals have external and internal sensory receptors that detect different kinds of	
solution to a problem.	information.	
Present an argument to support or	An animal's sense receptors transfer information to the brain as signals.	
refute an explanation, model, or	The brain processes the signals into usable information.	
solution to a problem.	The brain can guide a response behavior and store memories.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Nerve cells communicate with each other to transmit information from the internal and	
	external environment often resulting in physiological or behavioral responses.	

Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems. Systems could include circulatory, excretory, digestive, respiratory, muscular, endocrine, or nervous systems.

7-MS-LS1-6 Construct a scientific explanation based on evidence for the role of photosynthesis and cellular respiration in the cycling of matter and flow of energy into and out of organisms.

LC-MS-LS1-6 Use a scientific explanation about photosynthesis to identify the movement of matter and flow of energy as plants use the energy from light to make sugars.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
designing solutions: Constructing	Plants, plant-like protists (including algae and phytoplankton), and other microorganisms use	Within a natural or
explanations (science) and designing	the energy from light, to make sugars (food) from carbon dioxide from the atmosphere and	designed system, the
solutions (engineering) in 6-8 builds	water from the environment through the process of photosynthesis, which also releases	transfer of energy drives
on K-5 experiences and progresses	oxygen. These sugars can be used immediately or stored for growth or later use. (MS.LS1C.a)	the motion and/or
to include constructing explanations		cycling of matter.
and designing solutions supported	Almost all energy that drives the cycling of matter comes from the sun.	
by multiple sources of evidence	Plants, algae, and photosynthetic microorganisms require energy (in the form of sunlight),	Energy can be
consistent with scientific ideas,	carbon dioxide, and water to survive.	transferred.
principles, and theories.	Plants and other organisms use the sun's energy to make sugars (food).	Energy transfer drives
Construct a scientific explanation	Plant cells contain organelles called chloroplasts, while animal cells do not.	the motion of matter
based on valid and reliable evidence	Chloroplasts allow plants to make the food they need to live through photosynthesis.	through systems
obtained from sources (including	During photosynthesis, food is made from carbon dioxide and water, and oxygen is	(natural and designed).
the students' own experiments) and	released.	Energy transfer drives
the assumption that theories and	The organism can use the food created immediately or store it for later use.	the cycling of matter
laws that describe the natural world		through systems
operate today as they did in the past	The chemical reaction by which plants produce complex food molecules (sugars) requires an	(natural and designed).
and will continue to do so in the	energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine	
future.	to form carbon-based organic molecules and release oxygen. Cellular respiration in plants and	
	animals involve chemical reactions with oxygen that release stored energy. In these	
Obtain evidence from valid and	processes, complex molecules containing carbon react with oxygen to produce carbon dioxide	
reliable sources.	and other materials. (MS.PS3D.a)	
Construct a scientific explanation		
based on evidence.	The sun provides the energy required for photosynthesis.	
Construct a scientific explanation	Photosynthesis is a chemical reaction.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
based on the assumption that	A chemical reaction is a process by which different reactants are converted to a new	
theories and laws that describe the	substance.	
natural world operate today as	During photosynthesis, food molecules are made from carbon dioxide and water.	
they did in the past.	During photosynthesis, plants release oxygen into the environment.	
	Plants and animals can take the energy stored in food through a process called cellular respiration.	
	A chemical reaction also occurs in animals during cellular respiration.	
	In cellular respiration, the food molecules react with oxygen to release energy and produce carbon dioxide and water.	
	LOUISIANA'S NATURAL RESOURCES Renewable resources have the ability to self-maintain due to the processes of photosynthesis. (MS.EVS1A.a)	
	Matter and energy cycle through both living and non-living parts of ecosystems. Plants are renewable resources because they reproduce. Renewable resources can maintain themselves by photosynthesis.	

C	arif	icat	ion	Sta	ton	nent

Emphasis is on tracing movement of matter and flow of energy.

7-MS-LS1-7 Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

LC-7-MS-LS1-7a Use a model to identify the outcome of the process of breaking down food molecules (e.g., sugar) as the release of energy, which can be used to support other processes within the organism.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
Modeling in 6-8 builds on K-5	Within individual organisms, food (energy) moves through a series of chemical reactions in	Matter is conserved
experiences and progresses to	which it is broken down and rearranged to form new molecules, to support growth, or to	because atoms are
developing, using, and revising	release energy through aerobic and anaerobic respiration. (MS.LS1C.b)	conserved in physical
models to describe, test, and predict		and chemical processes.
more abstract phenomena and	Organisms need food to provide materials and energy for life.	
design systems.	Organisms breakdown food molecules for energy.	Matter cannot be
 Develop and/or use a model to 	Organisms need energy to form new molecules and to grow.	created or destroyed.
predict and/or describe phenomena.	Energy can be released through aerobic and anaerobic respiration.	Matter is conserved
		because the original
Models can be used to describe	Cellular respiration in plants and animals involves chemical reactions with oxygen that release	number of atoms before
phenomena.	stored energy. In these processes, complex molecules containing carbon react with oxygen to	a reaction occurs
Models can be used to predict	produce carbon dioxide and other materials. (MS.LS1C.c)	(reactant) is the same
phenomena.		as the number of atoms
	Plants and animals can get the energy stored in food through a process called cellular	after the reaction
	respiration.	occurs (product).
	A chemical reaction also occurs in animals during cellular respiration.	
	In cellular respiration, the food molecules react with oxygen to release energy and produce carbon dioxide and water.	
	Other materials from food are used for building and repairing cell parts.	

Clarification Statement

Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.

7-MS-LS2-5 Undertake a design project that assists in maintaining diversity and ecosystem services.

LC-7-MS-LS2-5a Identify a design project that shows the stability of an ecosystem's biodiversity is the foundation of a healthy, functioning ecosystem.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
designing solutions:	Biodiversity describes the variety of species found in Earth's terrestrial and aquatic	Small changes in one
Constructing explanations (science)	ecosystems. The completeness or integrity of an ecosystem's biodiversity is often used as a	part of a system might
and designing solutions	measure of its health. (MS.LS2C.b)	cause large changes in
(engineering) in 6-8 builds on K-5		another part.
experiences and progresses to	Biodiversity refers to the variety of life an ecosystem contains (i.e., numbers of different	
include constructing explanations	species).	A small change in one
and designing solutions supported	An ecosystem's health is measured by its biodiversity or the variety of life it contains.	part of a system may
by multiple sources of evidence		have a big effect
consistent with scientific ideas,	BIODIVERSITY AND HUMANS	elsewhere in the
principles, and theories.	Changes in biodiversity can influence humans' resources, such as food, energy, and	system.
 Undertake a design project, 	medicines, as well as ecosystem services on which humans rely. (MS.LS4D.a)	
engaging in the design		
cycle, to construct and/or	A change in an ecosystem's biodiversity can impact humans.	
implement a solution that	Humans rely on ecosystems for resources (e.g., food, energy, medicine).	
meets specific design criteria and	Humans and other organisms impact biodiversity.	
constraints.		
	ENGINEERING DESIGN: DEVELOPING POSSIBLE SOLUTIONS	
Design solutions must meet certain	A solution needs to be tested to prove the validity of the design and then modified on the	
criteria and constraints.	basis of the test results in order to improve it. There are systematic processes for evaluating	
In the design cycle, solutions are	solutions with respect to how well they meet the criteria and constraints of a problem.	
modified on the basis of specific	Sometimes parts of different solutions can be combined to create a solution that is better	
design criteria and constraints.	than any of its predecessors. Models of all kinds are important for testing solutions	
A solution must meet specific	(MS.ETS1B.a)	
design criteria and constraints		
before it can be implemented.	Design solutions must be tested.	
	Tests are often designed to identify failure points or difficulties.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Testing a solution involves investigating how well it performs under a range of likely conditions.	
	Solutions are modified on the basis of the test results.	
	Different solutions can be combined to create a better solution.	
	Designing solutions to problems is a systematic process.	
	There are many types of models.	
	Models can be used to investigate how a design might work.	
	Models allow the designer to better understand the features of a design problem.	
	Engineering design is tested and altered due to criteria and constraints.	

Examples of ecosystem services could include water purification, nutrient recycling, habitat conservation or soil erosion mitigation. Examples of design solution constraints could include scientific, economic, or social considerations.

7- MS-LS2-4 Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. LC-7-MS-LS2-4a Using evidence, identify the outcome of changes in physical or biological components of an ecosystem to populations of organisms in that ecosystem.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
evidence: Engaging in argument	Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any	Small changes in one
from evidence in 6-8 builds on K-5	physical or biological component of an ecosystem can lead to shifts in all its populations.	part of a system might
experiences and progresses to	(MS.LS2C.a)	cause large changes in
constructing a convincing argument		another part.
that supports or refutes claims for	Ecosystems naturally change over time.	
either explanations or solutions	Disruptions to an ecosystem can affect all its populations.	A small change in one
about the natural and designed	Organisms and their environments are interconnected. Changes in one part of the system	part of a system may
world(s).	will affect other parts of the system.	have a big effect
• Construct, use, and/or present an	Changes in an organism's environment may cause a shift in populations.	elsewhere in the
oral and written		system.
argument supported by empirical		
evidence and scientific reasoning to		
support or refute an explanation or		
a model for a phenomenon or a		
solution to a problem.		
Construct an argument to support		
or refute an explanation, model, or		
solution to a problem.		
Use an argument to support or		
refute an explanation, model, or		
solution to a problem.		
Present an argument to support or		
refute an explanation, model, or		
solution to a problem.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept	
Clarification Statement			

Emphasis is on recognizing patterns in data, making inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.

7-MS-LS3-2 Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

LC-7-MS-LS3-2a Using a model(s), identify that in asexual reproduction identical inherited traits are passed from parents to offspring.

LC-7-MS-LS3-2b Using a model(s), identify that in sexual reproduction a variety of inherited traits are passed from parents to offspring and lead to differences in offspring (e.g., eye color).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	GROWTH AND DEVELOPMENT OF ORGANISMS	CAUSE AND EFFECT
Modeling in 6-8 builds on K-5	Organisms reproduce, either sexually or asexually, and transfer their genetic information to	Cause and effect
experiences and progresses to	their offspring. (MS.LS1B.a)	relationships may be
developing, using, and revising		used to predict
models to describe, test, and predict	Organisms can reproduce and transfer their genetic information to their offspring.	phenomena in natural
more abstract phenomena and	Sexual reproduction is the production of new living organisms by combining genetic	or designed systems.
design systems.	information from two individuals of different types (sexes).	
 Develop and/or use a model to 	In asexual reproduction, the offspring results in identical genetic information.	Cause and effect
predict and/or	Sexual reproduction results in offspring that have greater genetic diversity than those	relationships may be
describe phenomena.	resulting from asexual reproduction.	used to predict
		phenomena.
Models can be used to describe	Cells divide through the processes of mitosis and meiosis. (LS.MS.1B.b)	
phenomena.		
Models can be used to predict	Cells undergo a regular sequence of growth and division.	
phenomena.	There are two processes of cell division, mitosis and meiosis.	
	Cell division occurs via a process called mitosis, when a cell divides in two.	
	Mitosis produces two cells with identical genetic material.	
	In sexual reproduction, a specialized type of cell division called meiosis occurs.	
	Meiosis results in the production of sex cells, which contain only half the chromosomes from	
	the parent cell.	
	When the sex cells combine, one-half of the offspring's genetic information comes from the	
	"male" parent and one-half comes from the "female" parent.	
	INHERITANCE OF TRAITS	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Variations of inherited traits between parent and offspring arise from genetic differences that	
	result from the subset of chromosomes (and therefore genes) inherited. (MS.LS3A.d)	
	In all organisms, the genetic instructions for forming species' characteristics are carried in	
	the chromosomes.	
	Variations of inherited traits between the parent and offspring arise from random genetic differences.	
	Through inheritance, traits are passed from one generation to the next.	
	Genetic differences help to ensure the survival of offspring in varied environments.	
	In sexually reproducing organisms, each parent contributes to the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other. (MS.LS3B.a)	
	Genetic information is transferred to the offspring through egg and sperm cells. The offspring have a combination of genetic information from each parent. In species that reproduce sexually, each cell contains two variants of each chromosome, one inherited from each parent.	
	These variants are called alleles. An allele is defined as one of a pair of genes that appear at a particular location on a particular chromosome and control the same characteristic.	
	Each parent contributes half of the gene, or one allele, acquired at random by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These alleles may be identical or may differ from each other.	

Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.

7-MS-LS4-4 Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.

LC-7-MS-LS4-4a Identify a similarity or difference in an external feature (e.g., shape of ears on animals or shape of leaves on plants) between young plants and animals and their parents.

LC-7-MS-LS4-4b Describe the relationship between genetic variation and the success of organisms in a specific environment (e.g., individual organisms that have genetic variations and traits that are disadvantageous in a particular environment will be less likely to survive, and those traits will decrease from generation to generation due to natural selection).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL SELECTION	CAUSE AND EFFECT
designing solutions: Constructing	Natural selection leads to the predominance of certain traits in a population and the	Phenomena may have
explanations (science) and designing	suppression of others. (MS.LS4B.a)	more than one cause,
solutions (engineering) in 6-8 builds		and some cause and
on K-5 experiences and progresses	The diversity and changing of life forms over many generations is the result of natural	effect relationships in
to include constructing explanations	selection.	systems can only be
and designing solutions supported	Within every population, there are variations of organisms.	described using
by multiple sources of evidence	Some of these variations exhibit traits that favor the chance to survive and reproduce, while	probability.
consistent with scientific ideas,	others will decrease the likelihood to survive and reproduce.	
principles, and theories.	Natural selection leads to more organisms in a population with traits that favor the chance	Phenomena may have
Construct an explanation that	to survive and reproduce.	more than one cause.
includes qualitative	Therefore, organisms with advantageous traits survive, reproduce, and pass those traits to	Some cause and effect
or quantitative relationships	offspring.	relationships in systems
between variables that		can only be described
predict(s) and/or describe(s)		using probability.
phenomena.		Some cause and effect
		relationships are
Construct an explanation that		complex and can only
includes qualitative relationships to		be predicted using
predict and describe a phenomena.		probabilities.
Construct an explanation that		
includes quantitative relationships		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
to predict and describe a		
phenomena.		

Emphasis is on using simple probability statements and proportional reasoning to construct explanations about why some traits are suppressed and other traits become more prevalent for those individuals better at finding food, shelter, or avoiding predators.

7-MS-LS4-5 Gather, read, and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms.

LC-7-MS-LS4-5a Identify ways in which technologies (e.g., artificial selection for breeding of certain plants and animals) have changed the way humans influence the inheritance of desired traits in plants and animals.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	NATURAL SELECTION	CAUSE AND EFFECT
communicating information:	Genetic engineering techniques can manipulate the DNA within various organisms.	Phenomena may have
Obtaining, evaluating, and	Technology has changed the way humans influence the inheritance of desired traits in	more than one cause,
communicating information in 6-8	organisms (e.g., selective breeding, gene modification, gene therapy, or other methods).	and some cause and
builds on K-5 experiences and	(MS.LS4B.b)	effect relationships in
progresses to evaluating the merit		systems can only be
and validity of ideas and methods.	Through the use of biotechnology, scientists engineer plants and manipulate growing	described using
Gather, read, and synthesize	conditions to meet human needs and wants.	probability.
information from multiple	Genetic engineering manipulates the DNA within organisms.	
appropriate sources and assess the	Through technology, humans have found ways to enhance the rate at which some beneficial	Phenomena may have
credibility, accuracy, and possible	traits in some organisms occur.	more than one cause.
bias of each publication and	These technologies may include concepts such as genetic modification, animal husbandry,	Some cause and effect
methods used, and describe how	and gene therapy.	relationships in systems
they are supported or not supported by evidence.	Selective breeding is used to cultivate plants and domesticated animals with desirable traits.	can only be described using probability.
,	In artificial selection, humans can choose desired parental traits determined by genes,	Some cause and effect
Gather information from multiple	which are then passed on to offspring.	relationships are
appropriate sources.		complex and can only
Read information from multiple		be predicted using
appropriate sources.		probabilities.
Synthesize information from		•
multiple appropriate sources.		
Assess the credibility of each		
publication.		
Assess the accuracy of each		
publication.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Assess the possible bias of each publication. Assess the methods used by each publication. Use evidence to describe how the methods used are supported or not supported.		

Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy) and on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.

8-MS-PS1-1 Develop models to describe the atomic composition of simple molecules and extended structures.

LC-8-MS-PS1-1a Using a model(s), identify that an atom's nucleus as made of protons and neutrons and is surrounded by electrons.

LC-8-MS-PS1-1b Using a model(s), identify that individual atoms of the same or different types that repeat to form extended structures (e.g., sodium chloride).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION,
Modeling in 6-8 builds on K-5	Substances are made from different types of atoms, which combine with one another in	AND QUANTITY
experiences and progresses to	various ways. Atoms form molecules that range in size from two to thousands of atoms.	Time, space, and energy
developing, using and revising	(MS.PS1A.a)	phenomena can be
models to describe, test, and predict		observed at various
more abstract phenomena and	All matter is composed of tiny particles called atoms.	scales using models to
design systems.	Atoms are the basic unit of a chemical element.	study systems that are
 Develop and/or use a model to 	Substances are made from different type of atoms.	too large or too small.
predict and/or describe phenomena.	Atoms form molecules ranging from small to very complex structures.	
	A molecule is a group of atoms that are joined together and act as a single unit.	Phenomena can be
Models can be used to describe	Molecules can contain as many as a billion atoms or a few as two.	observed at different
phenomena.	The arrangement, motion, and interaction of these particles determine the three states of	scales (micro and
Models can be used to predict	matter (solid, liquid, and gas).	macro) in a system.
phenomena.		Phenomena can be
	Solids may be formed from molecules, or they may be extended structures with repeating	studied using models.
	subunits (e.g., crystals). (MS.PS1A.e)	Models can be used to
		explain time, space, and
	Solids have a definite volume and a definite shape.	energy phenomena.
	Solids may be formed from molecules.	
	Solids can be extended structures with repeating subunits.	
	Repeating subunits can create crystal structures.	
	Salt, sugar, sand, and snow are examples of crystalline solids.	

Emphasis is on developing models of molecules that vary in complexity. Examples of extended structures could include minerals such as but not limited to halite, agate, calcite, or sapphire. Examples of molecular-level models could include drawings, 3-D models, or computer representations showing different molecules with different types of atoms.

8-MS-PS1-3 Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

LC-8-MS-PS1-3a Compare and contrast characteristics of natural and synthetic materials (e.g., fibers) from provided information (e.g., text, media, visual displays, and data).

LC-8-MS-PS1-3b Identify ways in which natural resources undergo a chemical process to form synthetic materials (e.g., medicine, textiles, clothing) which impact society.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	STRUCTURE AND PROPERTIES OF MATTER	STRUCTURE AND
communicating information:	Each pure substance has characteristic physical and chemical properties (for any bulk quantity	FUNCTION
Obtaining, evaluating, and	under given conditions) under normal conditions that can be used to identify it. (MS.PS1A.b)	Structures can be
communicating information in 6-8		designed to serve
builds on K-5 experiences and	Pure substances are made from a single type of atom or molecule.	particular functions by
progresses to evaluating the merit	Elements and compounds are pure substances (e.g., carbon, oxygen, water, sodium	taking into account
and validity of ideas and methods.	chloride, methane).	properties of different
 Gather, read, and synthesize 	Pure substances have characteristics (physical and chemical properties) that are used to	materials, and how
information from multiple	identify them.	materials can be shaped
appropriate sources and assess the		and used.
credibility, accuracy, and possible	CHEMICAL REACTIONS	
bias of each publication and	Substances react chemically in characteristic ways. In a chemical process, the atoms that	Structures can be
methods used, and describe how	make up the original substances are regrouped into different molecules, and these new	designed to serve
they are supported or not supported	substances have different properties from those of the reactants. (MS.PS1B.a)	different functions.
by evidence.		The design of a
	A natural substance is made up of multiple elements found in nature.	structure must be based
Gather information from multiple	A synthetic substance is made up of multiple substances in a lab by scientists (e.g.,	on the properties of its
appropriate sources.	pesticides, medicines).	materials.
Identify and locate information	Substances react in characteristic ways (e.g., form gas, form precipitates, change color).	The design of a
from multiple appropriate sources.	When a chemical reaction occurs, the parts that make up the original substance are	structure must be based
Assess the credibility of each	regrouped in a new way that makes a new substance with new properties.	on its shape.
publication.	If atoms are rearranged, the ending result is a different substance.	The design of a
Assess the accuracy of each	Many substances react chemically with other substances to form new substances with	structure must be based
publication.	different properties.	on how it is being used.
Assess the possible bias of each		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
publication.		
Assess the methods used by each		
publication.		
Describe how the methods used are		
supported or not supported.		

Emphasis is on natural resources that undergo a chemical process to form synthetic materials. These natural resources may or may not be pure substances. Examples of new materials could include new medicine, foods, or alternative fuels, and focus is on qualitative as opposed to quantitative information.

8-MS-PS1-6 Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. LC-8-MS-PS1-6a Identify a chemical process that releases or absorbs thermal energy (e.g., dissolving ammonium chloride or calcium chloride) which, given the features of a problem, may provide a solution.

LC-8-MS-PS1-6b Identify a way to test or modify a device that either releases or absorbs thermal energy by chemical processes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	CHEMICAL REACTIONS	ENERGY AND MATTER:
designing solutions: Constructing	Some chemical reactions release energy (exothermic reactions), others store energy	FLOWS, CYCLES,
explanations and designing solutions	(endothermic reactions). (MS.PS1B.c)	AND CONSERVATION
in 6-8 builds on K-5 experiences and		The transfer of energy
progresses to include designing	When a substance interacts with other substances, called chemical reactions, it sometimes	can be tracked as
solutions supported by multiple	releases energy and sometimes stores energy.	energy flows through a
sources of evidence consistent with	Some reactions release energy (e.g., burning fuel in the presence of oxygen), and others	designed or natural
scientific ideas, principles, and	require energy input (e.g., synthesis of sugars from carbon dioxide and water).	system.
theories.	Exothermic reactions release energy.	
 Undertake a design project, 	Endothermic reactions absorb energy.	Energy cannot be
engaging in the design cycle, to		created or destroyed.
construct and/or implement a	OPTIMIZING THE DESIGN SOLUTION	Energy can be
solution that meets specific design	Although one design may not perform the best across all tests, identifying the characteristics	transferred.
criteria and constraints.	of the design that performs best in each test can provide useful information for the redesign process-that is, some of those characteristics may be incorporated into the new design.	Energy flows through systems (natural and
Design solutions must meet certain criteria and constraints.	(MS.ETS1.C.a)	designed).
In the design cycle, solutions are	One design may not perform the best across all tests.	
modified on the basis of specific	Identify and explain why one model is better than another.	
design criteria and constraints.	Analyze data from tests to identify how aspects of different design solutions can be	
A solution must meet specific	modified to create a new design and a better solution.	
design criteria and constraints	Analyze data from tests to identify how aspects of different design solutions can be	
before it can be implemented.	combined to create a new design and a better solution.	
	Optimization often requires making trade-offs among competing criteria.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Thus, one criterion is traded off for another that is deemed more important. Sometimes, different designs, each of them optimized for different conditions, are needed.	

Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride, calcium chloride or a citric acid and baking soda (sodium bicarbonate) reaction in order to warm or cool an object.

8-MS-PS3-3 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. *LC-8-MS-PS3-3a Use information (e.g., graph, model) to identify a device (e.g., foam cup, insulated box) that either minimizes or maximizes thermal energy transfer (e.g., keeping liquids hot or cold).*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER:
designing solutions: Constructing	Temperature is a measure of the average kinetic energy; the relationship between the	FLOWS, CYCLES, AND
explanations and designing solutions	temperature and the total energy of the system depends on the types, states, and amounts of	CONSERVATION
in 6-8 builds on K-5 experiences and	matter present. (MS.PS3A.d)	The transfer of energy
progresses to include constructing		can be tracked as
explanations and designing solutions	Temperature is a measurement used to determine how fast particles are moving inside of a	energy flows through a
supported by multiple sources of	substance or how much energy the substance contains.	designed or natural
evidence consistent with scientific	The temperature of matter is a measurement of the matter's average kinetic energy.	system.
ideas, principles, and theories.	The state, amount of substance, and the type of substance will all affect the total amount of	
 Apply scientific ideas, principles, 	energy it has.	Energy can be
and/or evidence to construct, revise		transferred.
and/or use an explanation for real-	CONSERVATION OF ENERGY AND ENERGY TRANSFER	Energy flows through
world phenomena, examples, or	Energy is spontaneously transferred out of hotter regions or objects and into colder ones.	systems (natural and
events.	(MS.PS3B.c)	designed).
Apply scientific ideas, principles,	Energy is transferred out of hotter regions into colder ones.	
and evidence to construct an	Energy is transferred out of hotter objects into colder ones.	
explanation of phenomena or	Heat energy transfers from warmer substances to cooler substances until they reach the	
events.	same temperature.	
Apply scientific ideas, principles,		
and evidence to revise an	DEFINING AND DELIMITING AN ENGINEERING PROBLEM	
explanation of phenomena or	The more precisely a design task's criteria and constraints can be defined, the more likely it is	
events.	that the designed solution will be successful. Specification of constraints includes	
Apply scientific ideas, principles,	consideration of scientific principles and other relevant knowledge that is likely to limit	
and evidence to use an explanation	possible solutions.(MS.ETS1A.a)	
of phenomena or events.		
	The engineering design process begins with the identification of a problem to solve and the	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	specification of criteria, that the final product or system must meet.	
	Define a design problem that can be solved through consideration of potential impacts on	
	people and the environment, and scientific or other issues that are relevant to the problem.	
	Engineering design is guided by criteria and constraints.	
	A solution needs to be tested, to prove the validity of the design and then modified on the	
	basis of the test results in order to improve it. There are systematic processes for evaluating	
	solutions with respect to how well they meet the criteria and constraints of a problem.	
	Sometimes parts of different solutions can be combined to create a solution that is better	
	than any of its predecessors. Models of all kinds are important for testing	
	solutions.(MS.ETS1B.a)	
	Design solutions must be tested.	
	Tests are often designed to identify failure points or difficulties.	
	Testing a solution involves investigating how well it performs under a range of likely conditions.	
	Solutions are modified on the basis of the test results.	
	Different solutions can be combined to create a better solution.	
	Designing solutions to problems is a systematic process.	
	There are many types of models.	
	Models can be used to investigate how a design might work.	
	Models allow the designer to better understand the features of a design problem.	

Emphasis is on the ability to maximize or minimize thermal energy transfer as it relates to devices used when an area loses electricity after a natural disaster. Examples of devices could include an insulated box or a solar cooker. Testing of the device relies on performance and not direct calculation of the total amount of thermal energy transferred.

8-MS-PS3-5 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

LC-8-MS-PS3-5a Using information from graphical displays of data and models, describe the change in the kinetic energy of an object as energy transferred to or from an object.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	CONSERVATION OF ENERGY AND ENERGY TRANSFER	ENERGY AND MATTER
evidence: Engaging in argument from evidence in 6-8 builds on K-5	When the kinetic energy of an object changes, there is inevitably some other change in	Energy may take
experiences and progresses to	energy at the same time. (MS.PS3B.a)	different forms (e.g., energy in fields, thermal
constructing a convincing argument that supports or refutes claims for	Mechanical energy comes from the motion (kinetic energy) and position (potential energy) of objects.	energy, energy of motion).
either explanations or solutions	Potential energy transforms into kinetic energy (e.g., a book sitting on a counter is at rest, it	
about the natural and designed world(s).	has potential energy. If a person knocks the book off of the counter, the book has kinetic energy as it falls, because it is in motion and the potential energy has transformed into	Different forms of energy (e.g., energy in
Construct, use, and/or present an	kinetic energy).	fields, thermal energy,
oral and written argument	A decrease of one form of energy is accompanied by an increase in one or more other forms	energy of motion) exist.
supported by empirical evidence	of energy and vice versa.	Energy is transformed
and scientific reasoning to support	Energy may transfer into or out of a system and it may change forms, but the total energy	from one form of
or refute an explanation or a model	cannot change.	energy to another.
for a phenomenon or a solution to a	Within a system, the change in stored energy is always balanced by a change in total kinetic	
problem.	energy.	
Construct an argument to support		
or refute an explanation, model, or		
solution to a problem.		
Use an argument to support or		
refute an explanation, model, or		
solution to a problem.		
Present an argument to support or		
refute an explanation, model, or		
solution to a problem.		

Examples of empirical evidence used in arguments could include an inventory or other representation of the energy (i.e., mechanical, thermal, or other forms of energy) before and after the transfer in the form of temperature changes or motion of object. This does not include the quantification of the energy transferred in the system.

8-MS-ESS1-4 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's geologic history. LC-8-MS-ESS1-4a Sequence the relative order of events from Earth's history shown by rock strata and patterns of layering (organize was more complex as a task/term than sequence).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	THE HISTORY OF PLANET EARTH	SCALE, PROPORTION,
designing solutions: Constructing	The geologic time scale interpreted from rock strata provides a way to organize Earth's	AND QUANTITY
explanations and designing solutions	history. Analyses of rock strata and the fossil record provide only relative dates, not an	Time, space, and energy
in 6-8 builds on K-5 experiences and	absolute scale. (MS.ESS1C.a)	phenomena can be
progresses to include constructing		observed at various
explanations and designing solutions	Past geological events and environments can be reconstructed by interpreting rock strata.	scales using models to
supported by multiple sources of	Earth's history is documented in the chronological order of its layers of rock. However, this	study systems that are
evidence consistent with scientific	ordering is not able to provide absolute dates.	too large or too small.
ideas, principles, and theories.	Absolute dating is a method of estimating the age of a rock sample in years via radiometric	
 Construct a scientific explanation 	techniques.	Phenomena can be
based on valid and reliable evidence	Scientists use relative dating and fossil evidence to correlate sedimentary rock sequences.	observed at different
obtained from sources (including	Relative dating is a scientific process of evaluation used to determine the relative order of	scales (micro and
the students' own experiments) and	past events, but does not determine the absolute age of an object.	macro) in a system.
the assumption that theories and		Phenomena can be
laws that describe the natural world	Scientists use data from radioactive dating techniques to estimate the age of Earth's	studied using models.
operate today as they did in the past	materials. (MS.ESS1C.b)	Models can be used to
and will continue to do so in the		explain time, space, and
future.	Most elements are stable.	energy phenomena.
	Some elements exist in forms that are unstable.	
Obtain evidence from valid and	Over time these elements breakdown or decay by releasing particles and energy.	
reliable sources.	This process is called radioactive decay.	
Construct a scientific explanation	Scientists use the rate at which these elements decay to calculate a rock's age.	
based on evidence.	Scientists use radioactive elements as natural clocks for determining ages of certain types of	
Construct a scientific explanation	rocks.	
based on the assumption that		
theories and laws that describe the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
natural world operate today as		
they did in the past.		

Emphasis is on analyses of rock formations and fossils they contain to establish relative ages of major events in Earth's history. Major events could include the formation of mountain chains and ocean basins, adaptation and extinction of particular living organisms, volcanic eruptions, periods of massive glaciation, and the development of watersheds and rivers through glaciation and water erosion. The events in Earth's history happened in the past continue today. Scientific explanations can include models.

8-MS-ESS2-1 Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.

LC-8-MS-ESS2-1a Identify relationships between components in a model showing the cycling of energy flows and matter within and among Earth's systems, including the sun and Earth's interior as primary energy sources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	EARTH'S MATERIALS AND SYSTEMS	STABILITY AND CHANGE
Modeling in 6-8 builds on K-5	All Earth processes are the result of energy flowing and matter cycling within and among the	Explanations of stability
experiences and progresses to	planet's systems. This energy is derived from the sun and Earth's hot interior. The energy that	and change in natural or
developing, using, and revising	flows and matter that cycles produce chemical and physical changes in Earth's materials and	designed systems can be
models to describe, test, and predict	living organisms. (MS.ESS2A.a)	constructed by
more abstract phenomena and		examining the changes
design systems.	Energy and matter cycle throughout our planet.	over time and forces at
 Develop and/or use a model to 	The energy which drives these processes is derived from the sun and Earth's hot interior.	different scales,
predict and/or describe phenomena.	Transfers of energy and movements of matter cause physical and chemical changes to occur	including the atomic
	in Earth's materials and organisms.	scale.
Models can be used to describe	The four spheres of the Earth are the atmosphere, the biosphere, the hydrosphere and the	
phenomena.	lithosphere.	Stability is a condition
Models can be used to predict	Earth's four spheres interact as part of a dynamic system in which changes over time are the	in which some aspects
phenomena.	result of external and internal energy sources.	of a system (natural or
		designed) are
		unchanging.
		Change can be
		observed at different
		scales (large and
		small/atomic) in a
		system.

Clarification Statement

Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth's materials.

8-MS-ESS2-2 Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. LC-8-MS-ESS2-2a Identify examples of processes to explain that change Earth's surface at varying time and spatial scales that can be large (e.g., plate motions) or small (e.g., landslides).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	EARTH'S MATERIALS AND SYSTEMS	SCALE, PROPORTION,
designing solutions: Constructing	The planet's systems interact over scales that range from microscopic to global in size, and	AND QUANTITY
explanations and designing solutions	they operate over fractions of a second to billions of years. These interactions have shaped	Time, space, and energy
in 6-8 builds on K-5 experiences and	Earth's history and will determine its future. (MS.ESS2A.b)	phenomena can be
progresses to include constructing		observed at various
explanations and designing solutions	Earth's systems are dynamic.	scales using models to
supported by multiple sources of	Earth's systems interact over a wide range of temporal (fractions of a second to billions of	study systems that are
evidence consistent with scientific	years) and spatial (microscopic to global) scales.	too large or too small.
ideas, principles, and theories.	Earth's systems, microscopic to global in size, have cycles that interact with each other.	
Construct a scientific explanation	Most changes occur gradually, but larger and rapid catastrophic events (e.g., volcanic	Phenomena can be
based on valid and reliable evidence	eruptions, earthquakes, hurricanes) also account for changes to Earth's surface.	observed at different
obtained from sources (including	These processes and their interactions have shaped and will continue to shape the Earth.	scales (micro and
the students' own experiments) and	Some satellites allow scientists to observe, over time, large-scale changes in the geosphere.	macro) in a system.
the assumption that theories and		Phenomena can be
laws that describe the natural world	THE ROLE OF WATER IN EARTH'S SURFACE PROCESSES	studied using models.
operate today as they did in the past	Water's movements—both on the land and underground—cause weathering and erosion,	Models can be used to
and will continue to do so in the	which change the land's surface features and create underground formations. (MS.ESS2C.e)	explain time, space, and
future.		energy phenomena.
	Sedimentary rocks are formed through the processes of weathering, erosion, and	
Obtain evidence from valid and	deposition.	
reliable sources.	Erosion shapes rock particles.	
Construct a scientific explanation	Erosion shapes and reshapes the land surface (e.g., coastal erosions land loss).	
based on evidence from readings,	Over time, microscopic particle movement that takes place during weathering and erosion	
diagrams, charts, and/or tables.	by the water cycle's continuous movement change the land's surface features (e.g.,	
Construct a scientific explanation	deposition by the movement of water, ice and wind).	
based on the assumption that the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
natural world operates today as they did in the past.	Over time, the water cycle's continuous movement create underground formations (e.g., aquifers).	

Emphasis is on how processes change Earth's surface at time and spatial scales that can be large (such as slow plate motions or the uplift of a large mountain ranges) or small (such as rapid landslides on microscopic geochemical reactions), and how many geosciences processes usually behave gradually but are punctuated by catastrophic events (such as earthquakes, volcanoes, and meteor impacts). Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.

8-MS-ESS2-3 Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and sea floor structures to provide evidence of the past plate motions.

LC-8-MS-ESS2-3a Using graphical displays of data, identify how the shapes of the continents (e.g., fit like a jigsaw puzzle) and fossil comparisons (e.g., fit together) along the edges of continents to demonstrate lithospheric plate movement.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting	THE HISTORY OF PLANET EARTH	PATTERNS
data: Analyzing data in 6-8	Tectonic processes continually generate new ocean sea floor at ridges and	Patterns in rates of change and other
builds on K-5 experiences	destroy old sea floor at trenches. (MS.ESS1C.c)	numerical relationships can provide
and progresses to		information about natural and human
extending quantitative	Tectonic processes cause the movement of Earth's plates and sea floor	designed systems.
analysis to investigations,	spreading.	
distinguishing between	Large plates of Earth's surface have moved and continue to move due to	Patterns in rates of change can provide
correlation and causation,	natural forces in the Earth's interior.	information about systems (natural and
and basic statistical	These movements generate new ocean sea floor at mid-ocean ridges.	designed).
techniques of data and	These movements destroy old ocean floor at trenches (e.g., subduction zones)	Patterns in numerical relationships can
error analysis.	as plates overlap or pull away from each other.	provide information about systems (natural
 Analyze and interpret 	In sea floor spreading, molten material forms new rock along the mid-ocean	and designed).
data to provide evidence	ridge.	
for phenomena.	All subducted plates are oceanic, which keeps the ocean floor in a constant stat	
	e of change; whereas, the continents change much more slowly in geologic tim	
Interpret data to provide	е.	
evidence for phenomena.		
Analyze data to provide	PLATE TECTONICS AND LARGE-SCALE SYSTEM INTERACTIONS	
evidence for phenomena.	Maps of ancient land and water patterns, based on investigations of rocks and	
	fossils, make clear how Earth's plates have moved great distances, collided, and	
	spread apart. (MS.ESS2B.a)	
	The theory of plate tectonics explains plate movements and how they cause	
	continental drift.	
	Scientist believe that at one time the continents were connected and then grad	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	ually separated by lithospheric plate movement. The shapes of the continents (fit like a jigsaw puzzle) demonstrate lithospheric plate movement. Evidence of the continents being connected include the shapes of the continent s, and fossil and rock similarities from continents no longer connected. Fossil comparisons along the edges of continents demonstrate lithospheric plate movement. Data analysis, including maps, the distribution of fossils and rocks, continental shapes, and sea floor spreading provide evidence of past plate motion.	

Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).

8-MS-ESS3-1 Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

LC-8-MS-ESS3-1a Identify explanations of the uneven distributions of Earth's minerals, energy, and groundwater resources due to past and current geoscience processes or by removal of resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL RESOURCES	CAUSE AND EFFECT
designing solutions: Constructing	Humans depend on Earth's land, ocean, atmosphere, and biosphere for many different	Cause and effect
explanations and designing solutions	resources. Minerals, fresh water, and biosphere resources are limited, and many are not	relationships may be
in 6-8 builds on K-5 experiences and	renewable or replaceable over human lifetimes. These resources are distributed unevenly	used to predict
progresses to include constructing	around the planet as a result of past geologic processes. (MS.ESS3A.a)	phenomena in natural
explanations and designing solutions		or designed systems.
supported by multiple sources of	Humans rely on natural resources from the Earth to meet their ever changing needs.	
evidence consistent with scientific	Many of these resources are not renewable or replaceable over a human lifetime.	Cause and effect
ideas, principles, and theories.	Some natural resources, called renewable resources, are naturally replaced in a relatively	relationships may be
Construct a scientific explanation	short time.	used to predict
based on valid and reliable evidence	Natural resources that are not replaced as they are used are called non-renewable	phenomena.
obtained from sources (including	resources.	
the students' own experiments) and	Natural resources occur all around the world, but are not distributed evenly.	
the assumption that theories and	In some locations on Earth, where geological processes have concentrated resources, they	
laws that describe the natural world	may be readily available.	
operate today as they did in the past		
and will continue to do so in the	LOUISIANA'S NATURAL RESOURCES	
future.	Non-renewable resources such as our state's fossil fuels are vast but limited. (MS.EVS1A.b)	
Obtain evidence from valid and	Louisiana has a variety of natural resources that are important for human life.	
reliable sources.	Non-renewable resources, like the state's fossil fuels we burn for energy, are not	
Construct a scientific explanation	replaceable over human lifetimes.	
based on evidence.		
Construct a scientific explanation		
based on the assumption that		
theories and laws that describe the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
natural world operate today as they did in the past.		
they did in the past.		

Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).

8-MS-ESS3-2 Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

LC-8-MS-ESS3-2a Use maps, charts, and images of natural hazards to look for patterns in past occurrences of catastrophic events in each of two regions to predict which location may receive a future similar catastrophic event.

LC-8-MS-ESS3-2b Identify technologies that mitigate the effects of natural hazards (e.g., the design of buildings and bridges to resist earthquakes, storm shelters for tornados, levees along rivers to prevent flooding).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	NATURAL HAZARDS	PATTERNS
Analyzing data in 6-8 builds on K-5	Mapping the history of natural hazards in a region, combined with an understanding of	Graphs, charts, and
experiences and progresses to	related geologic forces can help forecast the locations and likelihoods of future events.	images can be used to
extending quantitative analysis to	(MS.ESS3B.a)	identify patterns in data.
investigations, distinguishing		
between correlation and causation,	Natural processes can cause sudden or gradual changes to Earth's systems.	Graphs can be used to
and basic statistical techniques of	Natural hazards such as earthquakes, tsunamis, volcanic eruptions, severe weather, floods,	identify patterns.
data and error analysis.	and coastal erosion, adversely affect humans.	Charts can be used to
 Analyze and interpret data to 	Studying patterns of natural hazards allow scientists to assess potential risks so	identify patterns.
provide evidence for phenomena.	preparations can be made to minimize the hazards.	Images can be used to
	By mapping the natural events in an area and understanding the geological forces involved,	identify patterns.
Interpret data to provide evidence	future events can be predicted.	
for phenomena.	While humans cannot eliminate natural hazards, they can take steps to reduce their	
Analyze data to provide evidence	impacts.	
for phenomena.		

Clarification Statement

Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).

8-MS-ESS3-3 Apply scientific principles to design a method for monitoring and minimizing human impact on the environment. *LC-8-MS-ESS3-3 Using data from a design solution for minimizing a human impact on the environment, identify limitations of the solution.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	HUMAN IMPACTS ON EARTH'S SYSTEMS	CAUSE AND EFFECT
designing solutions: Constructing	Human activities, globally and locally, have significantly altered the biosphere, sometimes	Relationships can be
explanations and designing solutions	damaging or destroying natural habitats and causing the extinction of other species. But	classified as causal or
in 6-8 builds on K-5 experiences and	changes to Earth's environments can have different impacts (negative and positive) for	correlational, and
progresses to include constructing	different living things. (MS.ESS3C.a)	correlation does not
explanations and designing solutions		necessarily imply
supported by multiple sources of	People can harm Earth's resources in a variety of ways (e.g., polluting, deforestation,	causation. When
evidence consistent with scientific	overhunting, wasting water, and electricity, etc.).	describing relationships
ideas, principles, and theories.	The growth in human activities is stretching natural resources to their limit.	in science, sometimes
 Apply scientific ideas or principles 	This may have a negative impact on Earth unless actions are taken to mitigate this impact.	one event or effect is
to design, construct, and/or test a	Some changes to Earth's environment can have a positive impact for living things.	the direct result of
design of an object, tool, process or		another event or effect;
system.	Typically as human populations and per-capita consumption of natural resources increase, so	this is a causal
	do the negative impacts on Earth unless the activities and technologies involved are	relationship.
To design an object, tool, process or	engineered otherwise. (MS.ESS3C.b)	
system, scientists and engineers use		When describing
scientific ideas and principles.	As the human population grows, so does the consumption of natural resources.	relationships in science,
To construct an object, tool, process	As the human population grows, so do the human impacts on the planet.	sometimes two events
or system, scientists and engineers	Some negative effects of human activities are reversible using technology.	or effects can be
use scientific ideas and principles.		described by the
In science and engineering, a design	DEVELOPING POSSIBLE SOLUTIONS	strength (e.g., strong or
plan includes testing an object,	A solution needs to be tested to prove the validity of the design and then modified on the	weak) of their
tool, process or system.	basis of the test results in order to improve it. There are systematic processes for evaluating	relationship; this is a
	solutions with respect to how well they meet the criteria and constraints of a problem.	correlational
	Sometimes parts of different solutions can be combined to create a solution that is better	relationship.
	than any of its predecessors. Models of all kinds are important for testing solutions.	When there is a
	(ETS.MS.1B.a)	correlation between
		events or effects, it does

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
		not automatically mean
	Design solutions must be tested.	that one event or effect
	Tests are often designed to identify failure points or difficulties.	is the direct result of
	Testing a solution involves investigating how well it performs under a range of likely conditions.	another event or effect.
	Solutions are modified on the basis of the test results.	
	Different solutions can be combined to create a better solution.	
	Designing solutions to problems is a systematic process.	
	There are many types of models.	
	Models can be used to investigate how a design might work.	
	Models allow the designer to better understand the features of a design problem.	

Examples of the design process may include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts may include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).

8-MS-LS1-4 Construct and use argument(s) based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of survival and successful reproduction of animals and plants respectively.

LC-8-MS-LS1-4a Identify behaviors animals engage in (e.g., vocalization) that increase the likelihood of reproduction.

LC-8-MS-LS1-4b Identify specialized plant structures (e.g., bright flower parts) that increase the likelihood of reproduction.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	GROWTH AND DEVELOPMENT OF ORGANISMS	CAUSE AND EFFECT
evidence: Engaging in argument	Animals engage in characteristic behaviors that increase the odds of reproduction.	Phenomena may have
from evidence in 6-8 builds on K-5	(MS.LS1B.c)	more than one cause,
experiences and progresses to		and some cause and
constructing a convincing argument	Animals typically have behaviors that increase their likelihood to survive and reproduce.	effect relationships in
that supports or refutes claims for	A stimulus is a signal that causes an organism to react in some way.	systems can only be
either explanations or solutions	A response is an organism's reaction to the stimulus.	described using
about the natural and designed world(s).	An animals response may include external actions, internal changes (e.g., increased heartrate), or both.	probability.
• Construct, use, and/or present an	There are similarities and differences in how organisms respond to stimuli.	Phenomena may have
oral and written argument		more than one cause.
supported by empirical evidence	Plants (flowering and non-flowering) reproduce in a variety of ways, sometimes depending on	Some cause and effect
and scientific reasoning to support	animal behavior and specialized features for reproduction. (MS.LS1B.d)	relationships in systems
or refute an explanation or a model		can only be described
for a phenomenon or a solution to a	Plants reproduce in a variety of ways.	using probability.
problem.	Some plants rely on animals to survive and reproduce, such as brightly colored flowers to	Some cause and effect
	attract pollinators.	relationships are
Use empirical evidence to construct		complex and can only
an argument.	Group behavior has evolved because membership can increase the chances of survival for	be predicted using
Use empirical evidence to support	individuals and their genetic relatives. (MS.LS2D.a)	probabilities.
an argument.		
Use scientific reasoning to construct	There is usually some advantage to living in a group.	
an argument.	Animals form groups which increase their likelihood to survive and reproduce.	
Use scientific reasoning to support	In herds, some may watch for danger while others feed.	
an argument.	Animals in groups communicate information (e.g., food sources, danger, defending	
Use an argument to support a	themselves) to each other.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
model for a phenomena. Use an argument to refute a model	Some animal groups migrate to an area that provides abundant food, or a favorable place for reproduction, or both.	
for a phenomena.		
Use an argument to support a solution to a problem.		
Use an argument to refute a solution to a problem.		

Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, or vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds or creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, or hard shells on nuts that squirrels bury.

8-MS-LS1-5 Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. LC-8-MS-LS1-5a Identify a scientific explanation for how environmental factors (e.g., availability of light, space, water, size of habitat) affect the growth of animals and plants.

LC-8-MS-LS1-5b Identify a scientific explanation for how genetic factors (e.g., specific breeds of plants and animals and their typical sizes) affect the growth of animals and plants.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	GROWTH AND DEVELOPMENT OF ORGANISMS	CAUSE AND EFFECT
designing solutions: Constructing	Genetic factors as well as local conditions affect the growth of the adult plant. (MS.LS1B.e)	Phenomena may have
explanations (science) and designing		more than one cause,
solutions (engineering) in 6-8 builds	Environmental factors (e.g., availability of light, space, water, size of habitat) affect the	and some cause and
on K-5 experiences and progresses	growth of plants.	effect relationships in
to include constructing explanations	Genetic factors (e.g., specific breeds of plants) affect the growth of plants.	systems can only be
and designing solutions supported	Genetic factors as well as local conditions affect the size of the adult plant.	described using
by multiple sources of evidence		probability.
consistent with scientific ideas,		
principles, and theories.		Phenomena may have
• Construct a scientific explanation		more than one cause.
based on valid and reliable evidence		Some cause and effect
obtained from sources (including		relationships in systems
the students' own experiments) and		can only be described
the assumption that theories and		using probability.
laws that describe the natural world		Some cause and effect
operate today as they did in the past		relationships are
and will continue to do so in the		complex and can only
future.		be predicted using
		probabilities.
Construct a scientific explanation		
based on evidence.		
Construct a scientific explanation		
based on the assumption that		
theories and laws that describe the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
natural world operate today as		
they did in the past.		

Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, or fish growing larger in large ponds than they do in small ponds.

8-MS-LS3-1 Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

LC-8-MS-LS3-1a Use a model to explain how genetic variations in specific traits may occur as organisms pass on their genetic material from one generation to the next, along with small changes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	INHERITANCE OF TRAITS	STRUCTURE AND
Modeling in 6-8 builds on K-5	Genes are located in the chromosomes of cells, with each chromosome pair containing two	FUNCTION
experiences and progresses to	variants (alleles) of each of many distinct genes. Each distinct gene chiefly controls the	Complex and
developing, using, and revising	production of specific proteins, which in turn affects the traits of the individual.	microscopic structures
models to describe, test, and predict	(MS.LS3A.a)	and systems can be
more abstract phenomena and		visualized, modeled, and
design systems.	In sexual reproduction after the egg is fertilized, each of the new cells in the developing	used to describe how
 Develop and/or use a model to 	organism receives an exact copy of the genetic information contained in the nucleus of a	their function depends
predict and/or describe phenomena.	fertilized egg.	on the shapes,
	Chromosomes are found in the nucleus of the cell and contain genes that are made of DNA.	composition, and
Models can be used to describe	Inherited traits of individuals are controlled by genes.	relationships among its
phenomena.	Each cell contains two variants of each chromosome, one inherited from each parent.	parts; therefore,
Models can be used to predict phenomena.	An allele is defined as one of a pair of genes that appear at a particular location on a particular chromosome.	complex natural and designed
phenomena.	Each gene affects the traits of the individual.	structures/systems can
	Lacif gene affects the traits of the maintada.	be analyzed to
	Changes (mutations) to genes can result in changes to proteins, which can affect the	determine how they
	structures and functions of the organism and thereby change traits. (MS.LS3A.b)	function.
	structures and ranctions of the organism and thereby change traits. (Wis.EssA.b)	ranction.
	Mutations occur randomly.	Complex structures can
	Mutations can introduce variations in traits.	be visualized.
	Mutations can affect structures and resulting functions of the organism's trait	Microscopic structures
	characteristics.	can be visualized.
		Complex structures can
	VARIATION OF TRAITS	be modeled.
	In addition to variations that arise from sexual reproduction, genetic information can be	Microscopic structures

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	altered because of mutations. Though rare, mutations may result in changes to the structure	can be modeled.
	and function of proteins. Some changes are beneficial, others harmful, and some neutral to	The function of a
	the organism. (MS.LS3B.b)	structure depends on its
		shape.
	Alternative versions of genes (different alleles) account for variations in inherited	The function of a
	characteristics.	structure depends on its
	Traits that have changed can be passed from parent to offspring.	composition.
	Mutations can be inherited.	The function of a
	Mutations can be harmful, neutral, or an advantage for an organism.	structure depends on
		relationships among its
		parts.
		Designed
		structures/systems can
		be analyzed to
		determine how they
		function.

Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins. Examples include radiation treated plants, genetically modified organisms (e.g., roundup resistant crops, bioluminescence), or mutations both harmful and beneficial.

8-MS-LS4-1 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

LC-8-MS-LS4-1a Use data to identify that fossils of different animals that lived at different times are placed in chronological order (i.e., fossil record) and located in different sedimentary layers.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	PATTERNS
Analyzing data in 6-8 builds on K-5	Genetic information provides evidence of evolution. DNA sequences vary among species, but	Graphs, charts, and
experiences and progresses to	there are many overlaps; in fact, the ongoing branching that produces multiple lines of	images can be used to
extending quantitative analysis to	descent can be inferred by comparing the DNA sequences of different organisms. Such	identify patterns in data.
investigations, distinguishing	information is also derivable from the similarities and differences in amino acid sequences	
between correlation and causation,	and from observable anatomical and embryological evidence. (HS.LS4A.a)	Graphs can be used to
and basic statistical techniques of		identify patterns.
data and error analysis.	All living organisms on earth show tremendous differences of form and function.	Charts can be used to
Analyze and interpret data to	Scientists can compare DNA sequences to determine how species are related.	identify patterns.
determine similarities and	Scientists can compare protein (i.e., amino acid) sequences to determine how species are	Images can be used to
differences in findings.	related.	identify patterns.
_	Genetic information varies among species, but there are many overlaps.	
Use data to determine similarities	Similarities in DNA sequences, anatomical structure, and embryonic development can serve	
in findings.	as evidence of evolution.	
Use data to determine differences	Genetic information, similar structures, embryological development, and fossil evidence	
in findings.	support hypotheses of common ancestry.	

Clarification Statement

Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.

8-MS-LS4-2 Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

LC-8-MS-LS4-2a Recognize that similarities and differences in external structures can be used to infer evolutionary relationships between living and fossil organisms.

LC-8-MS-LS4-2b Identify an explanation of the evolutionary relationships between modern and fossil organisms.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	PATTERNS
designing solutions: Constructing	Anatomical similarities and differences between various organisms living today and between	Patterns can be used to
explanations (science) and designing	them and organisms in the fossil record, enable the reconstruction of evolutionary history and	identify cause and effect
solutions (engineering) in 6-8 builds	the inference of lines of evolutionary descent. (MS.LS4A.b)	relationships.
on K-5 experiences and progresses		
to include constructing explanations	By comparing modern-day organisms to organisms of the past, scientist can infer how	Scientists use patterns
and designing solutions supported	closely related they are in an evolutionary sense (e.g., comparing pictures of an ape,	to identify cause and
by multiple sources of evidence	caveman, and human).	effect relationships.
consistent with scientific ideas,	The Earth's present day species evolved from earlier, distinctly different species.	Identify causes and
principles, and theories.	Similarities and differences in anatomical structures between living organisms and extinct	effects of different
 Apply scientific ideas, principles, 	organisms can serve as evidence of evolution.	phenomena.
and/or evidence to construct, revise	Similarities and differences in anatomical structures between living organisms (e.g., skulls of	
and/or use an explanation for real-	modern crocodiles, skeletons of birds, features of modern whales and elephants) and extinct	
world phenomena, examples, or	organisms (e.g., skulls of fossilized crocodiles and fossilized dinosaurs) can show lines of	
events.	evolutionary descent.	
	More recently deposited rock layers are more likely to contain fossils resembling existing	
Apply scientific ideas to construct	species.	
an explanation of phenomena or		
events.	Comparison of the embryological development of different species also reveals similarities	
Apply scientific principles to construct an explanation of	that show relationships not evident in the fully-formed anatomy. (MS.LS4A.c)	
phenomena or events.	Similarities in embryonic development can serve as evidence of the relatedness of different	
Apply scientific evidence to	species.	
construct an explanation of phenomena or events.	Similarities in early development stages are evidence that species are related and shared a common ancestor.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Apply scientific ideas to revise an		
explanation of phenomena or		
events.		
Apply scientific principles to revise		
an explanation of phenomena or		
events.		
Apply scientific evidence to revise		
an explanation of phenomena or		
events.		
Apply scientific ideas to use an		
explanation of phenomena or		
events.		
Apply scientific principles to use an		
explanation of phenomena or		
events.		
Apply scientific evidence to use an		
explanation of phenomena or		
events.		

Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.

8-MS-LS4-3 Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

LC-8-MS-LS4-3a Identify patterns (i.e., pictorial displays, representations, data) in the embryological development as evidence of relationships among species.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	PATTERNS
Analyzing data in 6-8 builds on K-5	Anatomical similarities and differences between various organisms living today and between	Graphs, charts, and
experiences and progresses to	them and organisms in the fossil record, enable the reconstruction of evolutionary history and	images can be used to
extending quantitative analysis to	the inference of lines of evolutionary descent. (MS.LS4A.b)	identify patterns in data.
investigations, distinguishing		
between correlation and causation,	By comparing modern-day organisms, scientists can infer how closely related they are in an	Graphs can be used to
and basic statistical techniques of	evolutionary sense.	identify patterns.
data and error analysis.	The Earth's present day species evolved from earlier, distinctly different species.	Charts can be used to
 Construct, analyze, and/or 	Similarities and differences in anatomical structures between living organisms and extinct	identify patterns.
interpret graphical displays of data	organisms can serve as evidence of evolution.	Images can be used to
and/or large data sets to identify	Similarities and differences in anatomical structures between living organisms and extinct	identify patterns.
linear and nonlinear relationships.	organisms can show lines of evolutionary descent.	
	More recently deposited rock layers are more likely to contain fossils resembling existing species.	
Use graphical display of data to		
define the meaning of linear	Comparison of the embryological development of different species also reveals similarities	
relationships.	that show relationships not evident in the fully-formed anatomy. (MS.LS4A.c)	
Use graphical display of data to		
define the meaning of nonlinear	Similarities in embryonic development can serve as evidence of the relatedness of different	
relationships.	species.	
Use graphical displays of data to	Similarities in early development stages are evidence that species are related and shared a	
identify linear relationships.	common ancestor.	
Use graphical displays of data to		
identify nonlinear relationships.		
Use large data sets to identify		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
linear relationships. Use large data sets to identify nonlinear relationships.		

Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.

8-MS-LS4-6 Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations of species over time.

LC-8-MS-LS4-6a Analyze numerical data sets that represent a proportional relationship between some change in the environment and corresponding changes in genetic variation (i.e., traits) over time.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	ADAPTATION	CAUSE AND EFFECT
computational thinking:	Adaptation by natural selection acting over generations is one important process by which	Phenomena may have
Mathematical and computational	populations change over time in response to changes in environmental conditions. Traits that	more than one cause,
thinking in 6-8 builds on K-5	support successful survival and reproduction in the new environment tend to become more	and some cause and
experiences and progresses to	common; those that do not become less common. Thus, the distribution of traits in a	effect relationships in
identifying patterns in large data sets and using mathematical	population changes. (MS.LS4C.a)	systems can only be described using
concepts to support explanations and arguments.	Some organisms in a population exhibit traits and behaviors that will favor their chance to survive and reproduce.	probability.
• Use mathematical representations to describe and/or support scientific	Adaptations are the favorable traits and behaviors, which allow an organism to survive in its environment.	Phenomena may have more than one cause.
conclusions and design solutions.	Adaptation by natural selection leads to more organisms in a population with traits that favor the chance to survive and reproduce.	Some cause and effect relationships in systems
Use mathematical representations to describe scientific conclusions.	Inherited traits that aid survival and reproduction are much more likely to become common in a population, than traits that don't aid survival.	can only be described using probability.
Use mathematical representations to support scientific conclusions.	Species acquire many of their unique characteristics through biological adaptations, which involve the selection of naturally occurring variations in populations.	Some cause and effect relationships are
Use mathematical representations	These organisms reproduce, develop, have predictable life cycles, and pass on heritable	complex and can only
to describe design solutions. Use mathematical representations to support design solutions.	traits to their offspring.	be predicted using probabilities.

Clarification Statement

Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time. Students should be able to explain trends in data for the number of individuals with specific traits changing over time.

Performance Expectation and Louisiana Connectors

HS-PS1-1 Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level and the composition of the nucleus of atoms.

LC-HS-PS1-1a Identify the periodic table as a model to use to predict the properties of elements.

LC-HS-PS1-1b Identify that the periodic table was created based on the patterns of electrons in the outermost energy level of atoms.

LC-HS-PS1-1c Identify that the number of electrons in the outermost energy level of atoms impacts the behavior of the element.

LC-HS-PS1-1d Identify the periodic table as a model that predicts the number of electrons and other subatomic particles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
Modeling in 9-12 builds on K-8	Each atom has a charged substructure consisting of a nucleus, which is made of protons and	Different patterns may
experiences and progresses to using,	neutrons, surrounded by electrons. (HS.PS1A.a)	be observed at each of
synthesizing, and developing models		the scales at which a
to predict and show relationships	Atoms are the basic unit of a chemical element.	system is studied and
among variables between systems	Atoms are made of subatomic particles: protons, neutrons, and electrons.	can provide evidence fo
and their components in the natural	Atoms have a nucleus.	causality in explanations
and designed worlds.	The nucleus of an atom is made of positively charged protons and neutrons, which have no	of phenomena.
 Develop, revise, and/or use a 	net charge.	
model based on evidence to	A positively charged nucleus is surrounded by smaller negatively charged electrons.	Patterns can be used to
illustrate and/or predict the		explain phenomena.
relationships between systems or	The periodic table orders elements horizontally by the number of protons in the atom's	Different patterns can
between components of a system.	nucleus and places those with similar chemical properties in columns. The repeating patterns	be observed at differen
	of this table reflect patterns of outer electron states. (HS.PS1A.b)	scales (micro and
Use a model based on evidence to		macro) in a system.
identify and describe the	Electrons in the outermost energy level are called valence electrons.	Classifications used at
components of a system.	The periodic table of elements is an arrangement of the chemical elements ordered by	one scale may fail or
Use a model based on evidence to	atomic number or the number of protons in atoms.	need revision when
identify and describe the	The periodic table is used to predict the patterns of behavior of elements.	information from
relationships between the	The arrangement of the groups of the periodic table reflects the patterns of electrons in the	smaller or larger scales
components of a system.	outermost energy level of atoms, and therefore, the chemical properties of the elements in	is introduced.
Use a model based on evidence to	each group.	
predict relationships between	The atomic mass listed for each element on the periodic table corresponds to the relative	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
systems or within a system.	abundance of that element's different isotopes.	
Identify that models can help		
illustrate relationships between	TYPES OF INTERACTIONS	
systems or within a system.	Attraction and repulsion between electric charges at the atomic scale explain the structure,	
	properties, and transformations of matter, as well as the contact forces between material objects. (HS.PS2B.c)	
	The patterns and behaviors of elements are based on the attraction and repulsion between electrically charged particles and the patterns of the outermost electrons.	
	The reactivity and electronegativity of atoms can be determined by an element's location on the periodic table and its valence electrons attraction to the nucleus.	
	The number and types of bonds formed by an element and between elements, the number and charges of stable ions, and the relative sizes of atoms can be determined by an element's location on the periodic table.	

Clarification Statement		
	Examples of properties that could be predicted from patterns could include	
Physical Science	metals, nonmetals, metalloids, number of valence electrons, types of bonds	
	formed, or atomic mass. Emphasis is on main group elements.	
	Examples of properties that could be predicted from patterns could include	
	reactivity of metals, types of bonds formed, numbers of bonds formed, atomic	
Chemistry	radius, atomic mass, or reactions with oxygen. Emphasis is on main group	
	elements and qualitative understanding of the relative trends of ionization	
	energy and electronegativity.	

HS-PS1-2 Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.

LC-HS-PS1-2a Identify an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms.

LC-HS-PS1-2b Identify an explanation for the outcome of a simple chemical reaction based on trends in the periodic table.

LC-HS-PS1-2c Construct an explanation for the outcome of a simple chemical reaction based on the chemical properties of the elements involved.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
designing solutions: Constructing	The periodic table orders elements horizontally by the number of protons in the atom's	Different patterns may
explanations (science) and designing	nucleus and places those with similar chemical properties in columns. The repeating patterns	be observed at each of
solutions (engineering) in 9-12	of this table reflect patterns of outer electron states. (HS.PS1A.b)	the scales at which a
builds on K-8 experiences and		system is studied and
progresses to explanations and	Electrons in the outermost energy level are called valence electrons.	can provide evidence for
designs that are supported by	The periodic table of elements is an arrangement of the chemical elements ordered by	causality in explanations
multiple and independent student-	atomic number as determined by an atoms number of protons.	of phenomena.
generated sources of evidence	The periodic table is used to predict the patterns of behavior of elements.	
consistent with scientific ideas,	The arrangement of the groups of the periodic table reflects the patterns of electrons in the	Patterns can be used to
principles, and theories.	outermost energy level of atoms, and therefore, the chemical properties of the elements in	explain phenomena.
 Construct and revise an 	each group.	Different patterns can
explanation based on valid and	The atomic mass listed for each element on the periodic table corresponds to the relative	be observed at different
reliable evidence obtained from a	abundance of that element's different isotopes.	scales (micro and
variety of sources (including		macro) in a system.
students' own investigations,	CHEMICAL REACTIONS	Classifications used at
models, theories, simulations, peer	The fact that atoms are conserved, together with knowledge of the chemical properties of the	one scale may fail or
review) and the assumption that	elements involved, can be used to describe and predict chemical reactions. (HS.PS1B.c)	need revision when
theories and laws that describe the		information from
natural world operate today as they	A chemical reaction is the process in which substances undergo chemical changes that	smaller or larger scales
did in the past and will continue to	results in the formation of new substances.	is introduced.
do so in the future.	Atoms are conserved in chemical reactions.	
	Predicting involves making an inference about a future event based on evidence.	
Construct an explanation based on		
valid and reliable evidence from a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
variety of sources. Construct an explanation based on valid and reliable evidence from the assumption that theories and laws that describe the natural world	An element's chemical and physical properties can be predicted knowing only its position on the periodic table.	Crosscatting Concept
operate today as they did in the past and will continue to do so in the future. Revise an explanation based on valid and reliable evidence from a variety of sources.		
Revise an explanation based on valid and reliable evidence from the assumption that theories and laws that describe the natural world operate today as they did in the		
past and will continue to do so in the future.		

Clarification Statement		
	Examples of chemical reactions could include the reaction of sodium and	
Physical Science	chlorine, carbon and oxygen, or hydrogen and oxygen. Reaction classification	
Physical Science	includes synthesis, decomposition, single displacement, double displacement,	
	and acid-base.	
	Examples of chemical reactions could include the reaction of sodium and	
Chamiatus	chlorine, carbon and oxygen, or carbon and hydrogen. Reaction classification	
Chemistry	aids in the prediction of products (e.g., synthesis, decomposition, single	
	displacement, double displacement, and acid-base).	

HS-PS1-3 Plan and conduct an investigation to gather evidence to compare the structure of substances at the macroscale to infer the strength of electrical forces between particles.

LC-HS-PS1-3a Identify bulk properties of substances (i.e., melting point, boiling point, and surface tension).

LC-HS-PS1-3b Identify that electrical forces within and between atoms can keep particles close together.

LC-HS-PS1-3c Conduct an experiment to gather evidence of the strength of electrical forces between particles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
investigations: Planning and	The structure and interactions of matter at the macro scale are determined by electrical	Different patterns may
carrying out investigations to	forces within and between atoms. (HS.PS1A.c)	be observed at each of
answer questions (science) or test		the scales at which a
solutions (engineering) to problems	Electrical attractions and repulsions between charged particles (i.e., atomic nuclei and	system is studied and
in 9-12 builds on K-8 experiences	electrons) in matter explain the structure of atoms and the forces between atoms that cause	can provide evidence for
and progresses to include	them to form compounds.	causality in explanations
investigations that provide evidence	The varied properties (e.g., hardness, conductivity) of the materials can be understood in	of phenomena.
for and test conceptual,	terms of the atomic and molecular constituents and the forces within and between them.	
mathematical, physical, and		Patterns can be used to
empirical models.	TYPES OF INTERACTIONS	explain phenomena.
Plan and conduct an investigation	Attraction and repulsion between electric charges at the atomic scale explain the structure,	Different patterns can
individually and/or collaboratively to	properties, and transformations of matter, as well as the contact forces between material	be observed at different
produce data to serve as the basis	objects. (secondary) (HS.PS2B.c)	scales (micro and
for evidence, and in the design:		macro) in a system.
decide on types, how much, and	An atom's electron structure determines its physical and chemical properties.	Classifications used at
accuracy of data needed to produce	The arrangement and motion of atoms vary in characteristic ways, depending on the	one scale may fail or
reliable measurements and consider	substance and its current state (e.g., solid, liquid).	need revision when
limitations on the precision of the	The charged substructure of an atom connects to the concepts of attraction and repulsion	information from
data (e.g., number of trials, cost,	between electric charges at the atomic scale.	smaller or larger scales
risk, time), and refine the design	The interactions of the electric charges at the atomic scale explain the structure, properties,	is introduced.
accordingly.	and transformations of matter.	
Plan an investigation individually		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and collaboratively to produce data		
to serve as the basis for evidence,		
and in the design: decide on types,		
how much, and accuracy of data		
needed to produce reliable		
measurements.		
Revise an investigation individually		
and collaboratively to produce data		
to serve as the basis for evidence.		
Conduct an investigation		
individually and collaboratively to		
produce data to serve as the basis		
for evidence.		

Clarification Statement		
Physical Science Examples of evaluation and refinement could include determining the of a device at protecting an object from damage such as, but not lim impact resistant packaging and modifying the design to improve it. E on qualitative evaluations.		
Chemistry	Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it by applying the impulse-momentum theorem. Examples of a device could include a football helmet or an airbag. Emphasis is on qualitative evaluations and/or algebraic manipulations.	

HS-PS1-4 Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.

LC-HS-PS1-4a Determine whether energy is released or absorbed in a chemical reaction system using various types of models (e.g., drawings, graphs, etc.).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	A stable molecule has less energy than the same set of atoms separated; one must provide at	Changes of energy and
experiences and progresses to using,	least this energy in order to take the molecule apart. (HS.PS1A.d)	matter in a system can
synthesizing, and developing models		be described in terms of
to predict and show relationships	Matter can be broken apart and rearranged to form new compounds/substances.	energy and matter flows
among variables between systems	Forces between atoms that cause them to form molecules (via chemical bonds), which range	into, out of, and within
and their components in the natural	in size from two to thousands of atoms.	that system.
and designed worlds.	The energy required to break apart compound is equal or greater to the energy of its	
 Develop, revise, and/or use a 	formation.	The processes of energy
model based on evidence to		transformation and
illustrate and/or predict the	CHEMICAL REACTIONS	energy transfer can be
relationships between systems or	Chemical processes, their rates, and whether or not energy is stored or released can be	used to understand the
between components of a system.	understood in terms of the collisions of molecules and the rearrangements of atoms into new	changes that take place
	molecules, with consequent changes in the sum of all bond energies in the set of molecules	in physical systems.
Develop or use a model to identify	that are matched by changes in kinetic energy. (HS.PS1B.a)	
and describe the components of a		
system.	The total energy change of the chemical reaction system is matched by an equal but	
Develop or use a model to identify	opposite change of energy in the surroundings.	
and describe the relationships	The properties of the macromolecules depend on the properties of the molecules used in	
between the components of a	their formation.	
system.	Any chemical process involves a change in chemical bonds and the related bond energies	
Develop or use a model to predict	and thus in the total chemical binding energy.	
relationships between systems or	This change is matched by a difference between the total kinetic energy of the set of	
within a system.	reactant molecules before the collision and that of the set of product molecules after the	
Identify that models can help	collision (conservation of energy).	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		
systems or within a system.		

Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.

HS-PS1-5 Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.

LC-HS-PS1-5a Identify the effects of changing the temperature of the reacting particles at the rate at which a simple reaction (i.e., two reactants) occurs using a model (e.g., a table of data) of the number and energy of collisions between particles.

LC-HS-PS1-5b Identify the effects of changing the concentration of the reacting particles at the rate at which a simple reaction (i.e., two reactants) occurs using a model (e.g., a table of data) of the number and energy of collisions between particles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	CHEMICAL REACTIONS	PATTERNS
designing solutions: Constructing	Chemical processes, their rates, and whether or not energy is stored or released can be	Different patterns may
explanations (science) and designing	understood in terms of the collisions of molecules and the rearrangements of atoms into new	be observed at each of
solutions (engineering) in 9-12	molecules, with consequent changes in the sum of all bond energies in the set of molecules	the scales at which a
builds on K-8 experiences and	that are matched by changes in kinetic energy. (HS.PS1B.a)	system is studied and
progresses to explanations and		can provide evidence for
designs that are supported by	The total energy change of the chemical reaction system is matched by an equal but	causality in explanations
multiple and independent student-	opposite change of energy in the surroundings.	of phenomena.
generated sources of evidence	The properties of the macromolecules depend on the properties of the molecules used in	
consistent with scientific ideas,	their formation.	Patterns can be used to
principles, and theories.	Any chemical process involves a change in chemical bonds and the related bond energies	explain phenomena.
 Apply scientific ideas, principles, 	and thus in the total chemical binding energy.	Different patterns can
and/or evidence to provide an	This change is matched by a difference between the total kinetic energy of the set of	be observed at different
explanation of phenomena and	reactant molecules before the collision and that of the set of product molecules after the	scales (micro and
solve design problems, taking into	collision (conservation of energy).	macro) in a system.
account possible unanticipated		Classifications used at
effects.		one scale may fail or
		need revision when
Apply scientific ideas to provide an		information from
explanation of phenomena taking		smaller or larger scales
into account possible unanticipated		is introduced.
effects.		
Apply scientific ideas to solve		
design problems, taking into		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
account possible unanticipated		
effects.		
Apply scientific principles to provide		
an explanation of phenomena		
taking into account possible		
unanticipated effects.		
Apply scientific principles to solve		
design problems, taking into		
account possible unanticipated		
effects.		
Apply scientific evidence to provide		
an explanation of phenomena		
taking into account possible		
unanticipated effects.		
Apply scientific evidence to solve		
design problems, taking into		
account possible unanticipated		
effects.		

Student reasoning should focus on the number and energy of collisions between molecules. Emphasis is on simple reactions in which there are only two reactants; evidence from temperature, concentration, and rate data; and qualitative relationships between rate and temperature.

HS-PS1-6 Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium. LC-HS-PS1-6a Identify a change in one variable (i.e., temperature, concentration, pressure) of a chemical equation that would produce increased amounts of products at equilibrium.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	CHEMICAL REACTIONS	STABILITY AND CHANGE
designing solutions: Constructing	In many situations, a dynamic and condition-dependent balance between a reaction and the	Much of science deals
explanations (science) and designing	reverse reaction determines the numbers of all types of molecules present. (HS.PS1B.b)	with constructing
solutions (engineering) in 9-12		explanations of how
builds on K-8 experiences and	A system at equilibrium appears stable at the macroscopic level.	things change and how
progresses to explanations and	The speeds at which a reaction and its reverse reaction occur determines the numbers of all	they remain stable.
designs that are supported by	types of reactants and products present in a system. (Sometimes they are not balanced.)	
multiple and independent student-	Reversible reactions will reach an equilibrium point where the concentrations of the	Science deals with
generated sources of evidence	reactants and products will no longer change.	constructing
consistent with scientific ideas,	The balance between a reaction and the reverse reaction determines the numbers of all	explanations of how
principles, and theories.	types of molecules present.	things change.
 Design, evaluate, and/or refine a 		Science deals with
solution to a complex real-world	OPTIMIZING THE DESIGN SOLUTION	constructing
problem, based on scientific	Criteria may need to be broken down into simpler ones that can be approached	explanations of how
knowledge, student-generated	systematically, and decisions about the priority of certain criteria over others (tradeoffs) may	things remain stable.
sources of evidence, prioritized	be needed (secondary). (HS.ETS1C.a)	
criteria, and tradeoff considerations.		
	It is important to prioritize the benefits and costs of the design of a solution to a problem.	
Design a solution to a complex real-	The decision as to which criteria are critical and which ones can be traded off is a judgment	
world problem, based on scientific	based on the situation and the needs of the system.	
knowledge, student-generated		
sources of evidence, prioritized		
criteria, and tradeoff		
considerations.		
Evaluate a solution to a complex		
real-world problem, based on		
scientific knowledge, student-		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex realworld problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.		

Emphasis is on the application of Le Chatelier's Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.

HS-PS1-7 Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

LC-HS-PS1-7a Identify a chemical equation, and identify the reactants and products which support the claim that matter (i.e., atoms) is neither created or destroyed in a chemical reaction.

LC-HS-PS1-7b Identify a mathematical representation (e.g., table, graph) or pictorial depictions that illustrates the claim that mass is conserved during a chemical reaction.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	CHEMICAL REACTIONS	ENERGY AND MATTER
computational thinking:	The fact that atoms are conserved, together with knowledge of the chemical properties of the	The total amount of
Mathematical and computational	elements involved, can be used to describe and predict chemical reactions. (HS.PS1B.c)	energy and matter in
thinking in 9-12 builds on K-8		closed systems is
experiences and progresses to using	A chemical reaction is the process in which substances undergo chemical changes that	conserved.
algebraic thinking and analysis, a	results in the formation of new substances.	
range of linear and nonlinear	Atoms are conserved in chemical reactions.	When materials
functions, including computational	Predicting involves making an inference about a future event based on evidence.	interact within a closed
tools for statistical analysis to	An element's chemical and physical properties can be predicted knowing only its position on	system, the total mass
analyze, represent, and model data.	the periodic table.	of the system remains
Simple computational simulations	The periodic table can be used to predict the outcome of chemical reactions.	the same.
are created and used based on		When materials
mathematical models of basic		interact within a closed
assumptions.		system, energy may
• Use mathematical, computational,		change forms, but the
and/or algorithmic representations		total amount of energy
of phenomena or design solutions to		within the system
describe and/or support claims		remains the same.
and/or explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
design solutions to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement		
Physical Science	Emphasis is on using mathematical ideas to communicate the relationship between masses of reactants and products as well as balancing chemical	
Filysical Science	equations.	
	Emphasis is on using mathematical ideas as they relate to stoichiometry to	
Chemistry	communicate the proportional relationships between masses of atoms in the	
Chemistry	reactants and the products, and the translation of these relationships to the	
	macroscopic scale using the mole as the conversion from the atomic to the	

Clarification Statement	
	macroscopic scale. Emphasis is on assessing students' use of mathematical
	thinking and not on memorization and rote application of problem-solving
	techniques.

HS-PS1-8 Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

LC-HS-PS1-8a Identify models that illustrate nuclear processes (i.e., fusion, fission, and radioactive decays), involve the release or absorption of energy. LC-HS-PS1-8b Contrast changes during the processes of alpha, beta, or gamma radioactive decay using graphs or pictorial depictions of the composition of the nucleus of the atom and the energy released.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	NUCLEAR PROCESSES	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve	In nuclear processes,
experiences and progresses to using,	release or absorption of energy. The total number of neutrons plus protons does not change	atoms are not
synthesizing, and developing models	in any nuclear process. (HS.PS1C.a)	conserved, but the total
to predict and show relationships		number of protons plus
among variables between systems	Fission, fusion, and radioactive decay (alpha, beta, and gamma) are nuclear processes.	neutrons is conserved.
and their components in the natural	Nuclear fission and fusion reactions release energy.	
and designed world(s).	In fission reactions, an atom is split into two or more smaller atoms.	The total number of
 Develop, revise, and/or use a 	In fusion reactions, two smaller atoms fuse together to create a heavier atom.	protons plus neutrons is
model based on evidence to	When a nuclear process takes place, radioactive particles and/or rays may be produced.	the same before and
illustrate and/or predict the	Radioactive decay is the breakdown of an atomic nucleus resulting in the release of energy	after nuclear processes
relationships between systems or	and matter from the nucleus.	occur.
between components of a system.	The total number of neutrons plus protons is the same both before and after the nuclear process of radioactive decay.	
Develop or use a model to identify	Typically nuclear processes release much more energy per atom involved than do chemical	
and describe the components of a	processes.	
system.	The energy that is released or absorbed during nuclear processes are harmful to human	
Develop or use a model to identify and describe the relationships	tissues.	
between the components of a		
system.		
Develop or use a model to predict		
relationships between systems or		
within a system.		
Identify that models can help		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		
systems or within a system.		

Clarification Statement		
Physical Science	Emphasis is only on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds	
	of transformations. Radioactive decay focus is on its relationship to half-life.	
	Emphasis is on simple qualitative models, such as pictures or diagrams, and on	
Chemistry	the scale of energy released in nuclear processes relative to other kinds of	
	transformations. Emphasis is on alpha, beta, and gamma radioactive decays.	

HS-PS2-6 Communicate scientific and technical information about why the atomic-level, subatomic-level, and/or molecular level structure is important in the functioning of designed materials.

LC-HS-PS2-6a Communicate that different materials have different molecular structures and properties which determine different functioning of the material (e.g., flexible, but durable).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	STRUCTURE AND PROPERTIES OF MATTER	STRUCTURE AND
communicating information:	The structure and interactions of matter at the macro scale are determined by electrical	FUNCTION
Obtaining, evaluating, and	forces within and between atoms. (HS.PS1A.c)	Investigating or
communicating information in 9-12		designing new systems
builds on K-8 experiences and	Electrical attractions and repulsions between charged particles (i.e., atomic nuclei and	or structures requires a
progresses to evaluating the validity	electrons) in matter explain the structure of atoms and the forces between atoms that cause	detailed examination of
and reliability of the claims,	them to form compounds.	the properties of
methods, and designs.	The varied properties (e.g., hardness, conductivity) of the materials can be understood in	different materials, the
Communicate scientific and/or	terms of the atomic and molecular constituents and the forces within and between them.	structures of different
technical information or ideas (e.g.,		components, and
about phenomena and/or the	TYPES OF INTERACTIONS	connections of
process of development and the	Attraction and repulsion between electric charges at the atomic scale explain the structure,	components to reveal
design and performance of a	properties, and transformations of matter, as well as the contact forces between material	its function and/or solve
proposed process or system) in	objects. (HS.PS2B.c)	a problem.
multiple formats (i.e., orally,		
graphically, textually,	An atom's electron structure determines its physical and chemical properties.	Designing new
mathematically).	The arrangement and motion of atoms vary in characteristic ways, depending on the	structures/systems
	substance and its current state (e.g., solid, liquid).	requires knowledge of
Communicate scientific information	The charged substructure of an atom connects to the concepts of attraction and repulsion	the properties (e.g.,
in multiple formats (i.e., orally,	between electric charges at the atomic scale.	rigidity and hardness)
graphically, textually,	The interactions of the electric charges at the atomic scale explain the structure, properties,	of the materials needed
mathematically).	and transformations of matter.	for specific parts of the
Communicate technical information		structure.
in multiple formats (i.e., orally,	ELECTROMAGNETIC RADIATION	Designing new
graphically, textually,	Photoelectric materials emit electrons when they absorb light of a high-enough frequency.	structures/systems
mathematically).	(HS.PS4B.c)	requires knowledge of

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Communicate scientific ideas in		the structures of
multiple formats (i.e., orally,	The photoelectric effect is the movement of electrons in a substance when light is shined on	different components.
graphically, textually,	it. This movement causes an electric current to flow.	Designing a new
mathematically).	Some materials (e.g., solar panels) absorb photons of light and release electrons that can be	structure requires a
	transformed into an electric current.	detailed examination of
		the connections of
	Atoms of each element emit and absorb characteristic frequencies of light. These	components to reveal
	characteristics allow identification of the presence of an element, even in microscopic	its function.
	quantities. (HS.PS4B.d)	Designing a new
		structure requires a
	When the atoms of an element absorb energy, the electrons make transitions from lower	detailed examination of
	energy levels to higher energy levels.	the connections of
	When electrons subsequently return from higher energy levels to lower energy levels,	components to reveal
	energy is released predominantly in the form of electromagnetic radiation.	any problems.
	If emitted photons are in the visible region of the spectrum, they may be perceived different colors.	
	The result is called a line emission spectrum and can serve as a 'fingerprint' of the element to which the atoms belong.	

Emphasis is on the attractive and repulsive forces that determine the functioning of the material. Examples could include why electrically conductive materials are often made of metal, fireworks and neon signs are made of certain elements, flexible but durable materials are made up of long chained molecules, and pharmaceuticals are designed to interact with specific receptors.

HS-PS3-1 Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

LC-HS-PS3-1a Identify a model showing the change in the energy of one component in a system compared to the change in energy of another component in the system.

LC-HS-PS3-1b Identify a model showing the change in energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	DEFINITIONS OF ENERGY	SYSTEMS AND SYSTEM
computational thinking:	Energy is a quantitative property of a system that depends on the motion and interactions of	MODELS
Mathematical and computational	matter and radiation within that system. That there is a single quantity called energy is due to	Models can be used to
thinking in 9-12 builds on K-8	the fact that a system's total energy is conserved, even as, within the system, energy is	predict the behavior of a
experiences and progresses to using	continually transferred from one object to another and between its various possible forms.	system, but these
algebraic thinking and analysis, a	(HS.PS3A.a)	predictions have limited
range of linear and nonlinear		precision and reliability
functions including computational	Energy is the ability to do work or cause change.	due to the assumptions
tools for statistical analysis to	Energy transforms from one form to another, but these transformations are not always	and approximations
analyze, represent, and model data.	reversible.	inherent in models.
Simple computational simulations	A system's total energy is conserved regardless of the transfers within the system.	
are created and used based on	The total energy of a system changes only by the amount of energy transferred into and out	Models can be valuable
mathematical models of basic	of the system.	in predicting a system's
assumptions.		behaviors.
Create and/or revise a	CONSERVATION OF ENERGY AND ENERGY TRANSFER	Any model of a system
computational model or simulation	Conservation of energy means that the total change of energy in any system is always equal	incorporates
of a phenomenon, designed device,	to the total energy transferred into or out of the system. (HS.PS3B.a)	assumptions and
process, or system.		approximations.
	The law of conservation of energy states that when one form of energy is converted to	As a result, model-
Create a computational model of a	another, no energy is destroyed in the process.	based predictions have
phenomenon.	According to the law of conservation of energy, energy cannot be created or destroyed.	limited precision and
Revise a computational model of a	The total change of energy in any system is always equal to the total energy transferred	reliability.
phenomenon.	into or out of the system.	
Create a simulation of a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
phenomenon.	Energy cannot be created or destroyed, but it can be transported from one place to another	
Revise a simulation of a	and transferred between systems. (HS.PS3B.b)	
phenomenon.		
Create a computational model of a	Energy cannot be created or destroyed.	
designed device.	Energy can be transferred from one object to another and can be transformed from one	
Revise a computational model of a	form to another.	
designed device.	The processes of energy transformation and energy transfer can be used to understand the	
Create a simulation of a designed	changes that take place in physical systems.	
device.		
Revise a simulation of a designed	Mathematical expressions allow the concept of conservation of energy to be used to predict	
device.	and describe system behavior. These expressions quantify how the stored energy in a system	
Create a computational model of a	depends on its configuration (e.g., relative positions of charged particles, compression of a	
process.	spring) and how kinetic energy depends on mass and velocity. (HS.PS3B.c)	
Revise a computational model of a		
process.	The amount of energy available in a system is mathematically calculable.	
Create a simulation of a process.	Mathematical expressions quantify forms of energy in a system.	
Revise a simulation of a process.	These forms can be grouped into types of energy that are associated with the motion of	
Create a computational model of a	mass (kinetic energy), and types of energy associated with the position of mass and energy	
system.	fields (potential energy).	
Revise a computational model of a		
system.	The availability of energy limits what can occur in any system. (HS.PC3B.d)	
Create a simulation of a system.		
Revise a simulation of a system.	The amount of energy available in a system determines what the system is capable of	
	doing.	

Clarification Statement		
	Emphasis is on explaining the meaning of mathematical expressions used in	
Physical Science	the model. Focus is on basic algebraic expression or computations, systems of	
	two or three components, and thermal energy.	
	Emphasis is on explaining the meaning of mathematical expressions used in	
Chemistry	the model. Focus is on basic algebraic expression or computations; systems of	

Clarification Statement	
	two or three components; and thermal energy, kinetic energy, and/or the
	energies in gravitational, magnetic, or electric fields.

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

LC-HS-PS3-3a Identify the forms of energy that will be converted by a device that converts one form of energy into another form of energy.

LC-HS-PS3-3b Identify steps in a model of a device showing the transformations of energy that occur (e.g., solar cells, solar ovens, generators, turbines).

LC-HS-PS3-3c Describe constraints to the design of the device which converts one form of energy into another form of energy (e.g., cost or efficiency of energy conversion).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	Changes of energy and
solutions: Constructing explanations	light, and thermal energy. (HS.PS3A.b)	matter in a system can
(science) and designing solutions		be described in terms of
(engineering) in 9-12 builds on K-8	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	energy and matter flows
experiences and progresses to		into, out of, and within
explanations and designs that are	ENERGY IN CHEMICAL PROCESSES	that system.
supported by multiple and	Although energy cannot be destroyed, it can be converted to other forms—for example, to	
independent student-generated	thermal energy in the surrounding environment. (HS.PS3D.a)	The processes of energy
sources of evidence consistent with		transformation and
scientific ideas, principles, and	A system does not destroy energy when carrying out any process.	energy transfer can be
theories.	When carrying out a process, most often some or all of the energy has been transferred to	used to understand the
 Design, evaluate, and/or refine a 	heat the surrounding environment.	changes that take place
solution to a complex real-world	Energy can be transformed into other energy forms.	in physical systems.
problem, based on scientific	To produce energy typically means to convert some stored energy into a desired form.	
knowledge, student-generated		
sources of evidence, prioritized	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
criteria, and trade-off	Criteria and constraints also include satisfying any requirements set by society, such as taking	
considerations.	issues of risk mitigation into account, and they should be quantified to the extent possible	
	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
Design a solution to a complex real-		
world problem, based on scientific	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
knowledge, student-generated	the design of the device.	
sources of evidence, prioritized		
criteria, and trade-off		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
considerations.	The social, economic, and political forces of a society have a significant influence on what	
Evaluate a solution to a complex	science and technology solutions are implemented.	
real-world problem, based on		
scientific knowledge, student- generated sources of evidence,		
prioritized criteria, and trade-off		
considerations.		
Refine a solution to a complex real-		
world problem, based on scientific		
knowledge, student-generated		
sources of evidence, prioritized		
criteria, and trade-off		
considerations.		

Clarification Statement		
Physical Science	Examples of phenomena at the macroscopic scale could include the conversion of potential energy to kinetic and thermal energy. Examples of models could	
rilysical science	include diagrams, drawings, descriptions, and computer simulations.	
	Examples of phenomena at the macroscopic scale could include the conversion	
Chemistry	of potential energy to kinetic and thermal energy, and the energy stored	
Chemistry	between two electrically-charged plates. Examples of models could include	
	diagrams, drawings, descriptions, and computer simulations.	

HS-PS3-4 Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). **LC-HS-PS3-4a Identify the temperatures of two liquids of different temperature before mixing and after combining to show uniform energy distribution. LC-HS-PS3-4b Investigate the transfer of thermal energy when two substances are combined within a closed system.**

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CONSERVATION OF ENERGY AND ENERGY TRANSFER	SYSTEMS AND SYSTEM
investigations: Planning and	Energy cannot be created or destroyed, but it can be transported from one place to another,	MODELS
carrying out investigations to	transformed into other forms, and transferred between systems. (HS.PS3B.b)	When investigating or
answer questions (science) or test		describing a system, the
solutions to problems (engineering)	Energy cannot be created or destroyed.	boundaries and initial
in 9-12 builds on K-8 experiences	Energy can be transferred from one object to another and can be transformed from one	conditions of the system
and progresses to include	form to another.	need to be defined and
investigations that provide evidence	The processes of energy transformation and energy transfer can be used to understand the	their inputs and outputs
for and test conceptual,	changes that take place in physical systems.	analyzed and described
mathematical, physical, and		using models.
empirical models.	Uncontrolled systems always evolve toward more stable states—that is, toward more uniform	
Plan and conduct an investigation	energy distribution (e.g., water flows downhill, objects hotter than their surrounding	Making models help
individually and collaboratively to	environment cool down). (HS.PS3B.e)	people understand
produce data to serve as the basis		things they cannot
for evidence, and in the design:	Energy can change from one kind to another.	observe directly.
decide on types, how much, and	When two substances (e.g., water or air) of different temperatures are combined (within a	Scientists use models to
accuracy of data needed to produce	closed system), the result will be a more uniform temperature (energy) distribution in the	represent things that
reliable measurements and consider	system.	are either very large or
limitations on the precision of the		very small.
data (e.g., number of trials, cost,	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	Any model of a system
risk, time), and refine the design	Although energy cannot be destroyed, it can be converted to less useful other forms—for	incorporates
accordingly.	example, to thermal energy in the surrounding environment. (HS.PS3D.a)	assumptions and
		approximations (e.g.,
Plan an investigation individually	Energy can be transformed into other energy forms.	the boundaries and
and collaboratively to produce data		initial conditions of the

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements. Revise an investigation individually and collaboratively to produce data to serve as the basis for evidence. Conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence.	When "producing" or "using" energy, most often some or all of the energy has been transferred to heat the surrounding environment.	system, inputs and outputs). It is critical to be aware of a system's physical, chemical, biological, and social interactions and how they affect the model's reliability and precision.

Clarification Statement		
	Emphasis is on analyzing data from student investigations and using	
	mathematical thinking appropriate to the subject to describe the energy	
Physical Science, Chemistry, and Physics	changes quantitatively and conceptually. Examples of investigations could	
	include mixing liquids at different initial temperatures or adding objects at	
	different temperatures to water.	

HS-PS3-6 Evaluate the validity and reliability of claims in published materials about the viability of nuclear power as a source of alternative energy relative to other forms of energy (e.g., fossil fuels, wind, solar, geothermal).

LC-HS-PS3-6a Identify the relationship between increasing energy demand and the technologies developed to meet these needs.

LC-HS-PS3-6b Identify an alternative energy system with minimal social and environmental consequences.

LC-HS-PS3-6c Evaluate a claim about nuclear energy as an alternative source of energy as opposed to other forms of energy.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	NUCLEAR PROCESSES	ENERGY AND MATTER
communicating information:	Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve	In nuclear processes,
Obtaining, evaluating, and	release or absorption of energy. The total number of neutrons plus protons does not change	atoms are not
communicating information in 9-12	in any nuclear process. (HS.PS1C.a)	conserved, but the total
builds on K-8 experiences and		number of protons plus
progresses to evaluating the validity	Fission, fusion, and radioactive decay (alpha, beta, and gamma) are nuclear processes.	neutrons is conserved.
and reliability of the claims,	Nuclear fission and fusion reactions release energy.	
methods, and designs.	In fission reactions, an atom is split into two or more smaller atoms.	The total number of
Evaluate the validity and reliability	In fusion reactions, two smaller atoms fuse together to create a heavier atom.	nuclear particles are the
of and/or synthesize multiple claims,	When a nuclear process takes place, radioactive particles and/or gamma radiation may be	same both before and
methods, and/or designs that	produced.	after the nuclear
appear in scientific and technical	Radioactive particles or decay occur when an unstable atomic nucleus loses energy by	process, although the
texts or media reports, verifying the	emitting radiation.	total number of protons
data when possible.	The total number of neutrons plus protons is the same both before and after the nuclear	and the total number of
	process of radioactive decay.	neutrons may be
Evaluate the validity and reliability	Typically nuclear processes release much more energy per atom involved than do chemical	different before and
of claims that appear in scientific	processes.	after.
and technical texts, verifying the	The energy that is released or absorbed during nuclear processes are harmful to human	
data when possible.	tissues.	
Evaluate the validity and reliability		
of claims that appear in media	DEVELOPING POSSIBLE SOLUTIONS	
reports, verifying the data when	When evaluating solutions it is important to take into account a range of constraints including	
possible.	cost, safety, reliability and aesthetics and to consider social, cultural and environmental	
Evaluate the validity and reliability	impacts. (HS.ETS1B.a)	

Disciplinary Core Idea	Crosscutting Concept
It is important to determine the full impact of the advantages and disadvantages when	
evaluating a solution.	
The development of solutions is driven by the following factors: economical, political,	
cultural, social, safety, and environmental.	
NATURAL RESOURCES	
All forms of energy production and other resource extraction have associated economic,	
social, environmental, and geopolitical costs and risks as well as benefits. New technologies	
and social regulations can change the balance of these factors. (HS.ESS3A.b)	
Energy production has associated economic, social, environmental, and geopolitical costs	
and risks.	
Energy production also has associated economic, social, environmental, and geopolitical	
benefits.	
•	
	It is important to determine the full impact of the advantages and disadvantages when evaluating a solution. The development of solutions is driven by the following factors: economical, political, cultural, social, safety, and environmental. NATURAL RESOURCES All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors. (HS.ESS3A.b) Energy production has associated economic, social, environmental, and geopolitical costs

Emphasis is on the tradeoffs existing between the amount of energy produced, the types and amounts of pollution produced, safety, and cost. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias.

HS-EVS1-1 Analyze and interpret data to identify the factors that affect sustainable development and natural resource management in Louisiana. LC-HS-EVS1-1a Identify factors (e.g., human activity, population size, types of crops grown) that affect sustainable development in Louisiana. LC-HS-EVS1-1b Identify factors (e.g., human activity, population size, types of crops grown) that affect natural resource management in Louisiana.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	LOUISIANA'S NATURAL RESOURCES	STABILITY AND CHANGE
Analyzing data in 9-12 builds on K-8	Ecosystem capital can be characterized as goods (removable products) and services such as	Change and rates of
experiences and progresses to	the functions and values of wetlands. (HS.EVS1A.a)	change can be
introducing more detailed statistical		quantified and modeled
analysis, the comparison of data	Ecosystem attributes or services are important to value.	over very short or very
sets for consistency, and the use of	Ecosystem capital are the resources or benefits provided by ecosystems that are needed for	long periods of time.
models to generate and analyze	economic development.	Some system changes
data.	Ecosystems provide different goods or removable products such as timber, food, medicines,	are irreversible.
 Analyze data using tools, 	and fuel.	
technologies, and/or models (e.g.,	Ecosystems serve important functions for human and wildlife (e.g., natural water filtration,	Change and rates of
computational, mathematical) in	control of floods by absorbing extra runoff from heavy rains, providing animal habitats).	change can be
order to make valid and reliable	Ecosystems provide social and cultural services such as recreation.	quantified over very
scientific claims or determine an	Changes to ecosystems (e.g., wetlands, forests) for commercial development, tourism, or	short or very long
optimal design solution.	agriculture to produce ecosystem capital can threaten and degrade those ecosystems.	periods of time.
		Change and rates of
Analyze data using tools in order to		change can be modeled
make valid and reliable scientific		over very short or very
claims.		long periods of time.
Analyze data using tools in order to		Some system changes
determine an optimal design		are irreversible.
solution.		
Analyze data using technology in		
order to make valid and reliable		
scientific claims.		
Analyze data using technology in		
order to determine an optimal		
design solution.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyze data using models in order		
to make valid and reliable scientific		
claims.		
Analyze data using models in order		
to determine an optimal design		
solution.		

Evidence of Louisiana's natural resource wealth is found in understanding functions and values of varied ecosystems and environments, supply of non-renewable mining products and profitable agricultural commodities. Examples of key natural resources include state waterways (such as rivers, lakes, and bayous) and the aquatic life found in them, regions of agriculture (pine forests, sugar cane, and rice fields) and high concentrations of minerals and fossil fuels on and off shore. Factors to consider in reviewing the management of natural resources include a review of historical practices, costs of resource extraction and waste management, consumption of natural resources, ongoing research and the advancements in technology.

HS-EVS1-2 Obtain, evaluate and communicate information on the effectiveness of management or conservation practices for one of Louisiana's natural resources with respect to common considerations such as social, economic, technological, and influencing political factors over the past 50 years.

LC-HS-EVS1-2a Identify the effectiveness of management practices for one of Louisiana's natural resources related to economic factors over the past 50 years.

LC-HS-EVS1-2b Identify the effectiveness of management practices for one of Louisiana's natural resources related to economic factors over the past 50 years.

LC-HS-EVS1-2c Identify the effectiveness of management practices for one of Louisiana's natural resources related to technological factors over the past 50 years.

LC-HS-EVS1-2d Identify the effectiveness of management practices for one of Louisiana's natural resources related to political factors over the past 50 years.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	RESOURCE MANAGEMENT FOR LOUISIANA	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Some changes to our natural environment such as the building of levees and hydrological	Cause and effect
experiences and progresses to	modification have provided for economic and social development but have resulted in	relationships can be
introducing more detailed statistical	unintended negative impacts. (HS.EVS1.B.b)	suggested and predicted
analysis, the comparison of data		for complex natural and
sets for consistency, and the use of	The natural environment can be changed by human activity.	human-designed
models to generate and analyze	Human activity can have both positive and negative effects on the natural environment.	systems by examining
data.	The economic and social development benefits from building levees and hydrological	what is known about
 Analyze data to identify design 	modification include supplying sources of power (i.e., clean, inexpensive, and renewable	smaller scale
features or characteristics of the	energy), water for irrigation and drinking, and reduction of flooding downstream.	mechanisms within the
components of a proposed process	Negative impacts of hydrological modification (e.g., building dams and levees) can include	system.
or system to optimize it relative to	altering the temperature and speed of water, reduction in organisms and in-stream	
criteria for success.	vegetation, movement of fish populations, increased flooding downstream, and preventing	Cause and effect
	seasonal overbank flooding that can provide needed nutrients to soils.	relationships can be
Analyze data using tools in order to	Humans can take steps to restore some damaged ecosystems (e.g., fish ladders,	suggested for complex
make valid and reliable scientific	consideration of environmental impacts of new or renewed licenses for hydroelectric dams).	systems (natural and
claims.		human-designed) by
Analyze data using tools in order to		examining what is
determine an optimal design		known about smaller
solution.		scale mechanisms
Analyze data using technology in		within the system.
order to make valid and reliable		Cause and effect
scientific claims.		relationships can be

Disciplinary Core Idea	Crosscutting Concept
	predicted for complex
	systems (natural and
	human-designed) by
	examining what is
	known about smaller
	scale mechanisms
	within the system.
	Disciplinary Core Idea

The rate of land loss and habitat conversion from a variety of forces results in stresses and constraints that influence decisions and carry consequences that affect quality of life and have a bearing on sustainability. Increases in commercial and recreational uses may result in the need for environmental policies and call for changes in long established practices. Community efforts to address changes to secure growth while preserving the resources depend on education and collaboration between groups. Examples may include ground water conservation, erosion/flood control, forestry stewardship, game and wildlife, commercial fishing, oil and gas industry, dredging, or regulatory factors.

HS-EVS1-3 Analyze and interpret data about the consequences of environmental decisions to determine the risk-benefit values of actions and practices implemented for selected issues.

LC-HS-EVS1-3a Identify the risk-benefit values of implemented actions using data for selected environmental issues.

LC-HS-ESV1-3b Identify the risk-benefit values of implemented practices using data for selected environmental issues.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	RESOURCE MANAGEMENT FOR LOUISIANA	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Some changes to our natural environment such as the building of levees and hydrological	Cause and effect
experiences and progresses to	modification have provided for economic and social development but have resulted in	relationships can be
introducing more detailed statistical	unintended negative impacts. (HS.EVS1B.b)	suggested and predicted
analysis, the comparison of data		for complex natural and
sets for consistency, and the use of	The natural environment can be changed by human activity.	human-designed
models to generate and analyze	Human activity can have both positive and negative effects on the natural environment.	systems by examining
data.	The economic and social development benefits from building levees and hydrological	what is known about
 Analyze data to identify design 	modification include supplying sources of power (i.e., clean, inexpensive, and renewable	smaller scale
features or characteristics of the	energy), water for irrigation and drinking, and reduction of flooding downstream.	mechanisms within the
components of a proposed process	Negative impacts of hydrological modification (e.g., building dams and levees) can include	system.
or system to optimize it relative to	altering the temperature and speed of water, reduction in organisms and in-stream	
criteria for success.	vegetation, movement of fish populations, increased flooding downstream, and preventing	Cause and effect
	seasonal overbank flooding that can provide needed nutrients to soils.	relationships can be
Analyze data using tools in order to	Humans can take steps to restore some damaged ecosystems (e.g., fish ladders,	suggested for complex
make valid and reliable scientific	consideration of environmental impacts of new or renewed licenses for hydroelectric dams).	systems (natural and
claims.		human-designed) by
Analyze data using tools in order to		examining what is
determine an optimal design		known about smaller
solution.		scale mechanisms
Analyze data using technology in		within the system.
order to make valid and reliable		Cause and effect
scientific claims.		relationships can be
Analyze data using technology in		predicted for complex

Disciplinary Core Idea	Crosscutting Concept
	systems (natural and
	human-designed) by
	examining what is
	known about smaller
	scale mechanisms
	within the system.
	Disciplinary Core Idea

Examples could be taken from system interactions: (1) loss of ground vegetation causing an increase in water runoff and soil erosion; (2) dammed rivers increasing ground-water recharge, decreasing sediment transport, and increasing coastal erosion; (3) loss of wetlands reducing storm protection buffer zones allowing further wetland reduction; and (4) hydrological modification such as levees providing protection to infrastructure at a cost to ecosystems.

HS-EVS2-1 Design and evaluate a solution to limit the introduction of non-point source pollution into state waterways.

LC-HS-EVS2-1a Use data or qualitative scientific and technical information to evaluate a solution to limit a non-point source pollution (e.g., land or urban runoff, abandoned mines) into state waterways.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	POLLUTION AND THE ENVIRONMENT	STRUCTURE AND
designing solutions: Constructing	Pollution includes both natural and man-made substances which occur at rates and levels	FUNCTION
explanations (science) and designing	which incur harm (i.e., combustion of fossil fuels, agricultural waste, and industrial	Investigating or
solutions (engineering) in 9-12	byproducts). Pollution can be categorized as point-source pollution and non-point source	designing new systems
builds on K-8 experiences and	pollution. (HS.EVS2A.a)	or structures requires a
progresses to explanations and		detailed examination of
designs that are supported by	Pollution is any change to the environment that has a negative effect on living things.	the properties of
multiple and independent student-	Natural pollution includes events that pollute the air including forest fires, volcanic	different materials, the
generated sources of evidence	eruptions, dust storms, and wind erosion.	structures of different
consistent with scientific ideas,	Pollution (e.g., air pollution) is often the result of an activity that benefits humans (e.g.,	components, and
principles, and theories.	generating electricity by burning coal, building and maintaining factories, burning fossil	connections of
 Design, evaluate and/or refine a 	fuels, carbon dioxide from vehicles, and other fine particles suspended in the air).	components to reveal
solution to a complex real-world	Some data suggest that the levels of pollution are increasing rapidly (i.e., increase in	its function and/or solve
problem, based on scientific	greenhouse gases).	a problem.
knowledge, student-generated	Pollution can be categorized as point-source pollution which are identifiable sources of	
sources of evidence, prioritized	pollution from which pollutants are discharged such as a pipe, ditch, ship, refineries,	Designing and/or
criteria and trade-off considerations.	automobile manufacturers, factories or sewage treatment plants.	investigating new
	Pollution can also be categorized as non-point source pollution which results from runoff or	structures/systems
Design a solution to a complex real-	rain or melted snow as it moves over the ground (e.g., following a heavy rain, water flows	requires knowledge of
world problem, based on scientific	across the surface of a road and picks up oil and gas left by car or chemicals used in	the properties (e.g.,
knowledge, student-generated	agriculture or lawn care flow into storm drains and then into nearby by bodies of water).	rigidity and hardness)
sources of evidence, prioritized		of the materials needed
criteria, and trade-off	ENVIRONMENTAL CHOICES	for specific parts of the
considerations.	Different approaches can be used to manage impacts to our environment. Generally speaking,	structure.
Evaluate a solution to a complex	we can change human activities to limit negative impacts. Alternately, we can use	Designing and/or
real-world problem, based on	technologies that reduce impact or we can perform restoration work to recover natural	investigating new
scientific knowledge, student-	functions and values. (HS.EVS2C.a)	structures/systems

LOUISIANA CONNECTORS Component Cards Science

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
generated sources of evidence,		requires knowledge of
prioritized criteria, and trade-off	Exponential growth of the global human population and the resulting increase in	the structures of
considerations.	consumption places severe stress on finite resources.	different components.
Refine a solution to a complex real-	Advances in technology can help mitigate human impact on the environment.	Designing and/or
world problem, based on scientific	Changes in human behaviors and activities (e.g., reduce the use of coal and other fossil	investigating a new
knowledge, student-generated	fuels) and laws that control air and water quality and promote development of new	structure requires a
sources of evidence, prioritized	technology can limit negative impacts on the environment.	detailed examination of
criteria, and trade-off	Technological solutions (e.g., wet scrubber; baghouse, solar panels, emission controls) can	the connections of
considerations.	result in lower levels of pollution (e.g., cleaner air) and reduce the environmental impact.	components to reveal
	Technological solutions (e.g., desalination of water to provide clean drinking water, vehicle	its function.
	fuel efficiency) can also restore or recover natural functions and values in the environment.	Designing and/or
		investigating a new
	Trade-offs occur when we make environmental choices. (HS.EVS2C.b)	structure requires a
		detailed examination of
	Environmental choices often requires making trade-offs among competing criteria (cost,	the connections of
	reliability, and aesthetic, social, cultural, and political impacts).	components to reveal
	Many factors, including environmental or health impacts, change over time and vary from place to place.	any problems.
	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Humanity faces major global challenges today, such as the need for supplies of clean water	
	and food or for energy sources that minimize pollution, which can be addressed through	
	engineering. These global challenges also may have manifestations in local communities. (HS.ETS1A.b)	
	There are common challenges faced by humans living across the world.	
	Human survival depends on developing practices that will achieve sustainable systems.	
	Common problems include the need for clean water and air, food (decreased crop yield),	
	and sources of energy that minimize pollution (e.g., solar energy).	
	These common problems faced by humans living across the world may also create issues in	
	local communities including illness (asthma), lack of clean drinking water, reduction in ecosystems and plants and animals.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept

Examples of non-point source water pollution could include nitrogen and phosphorus compounds from agricultural activities and sediments from poor land-use practices. Nitrogen and phosphorus contribute to eutrophication and are anthropogenic drivers of the Gulf of Mexico hypoxic area known as the dead zone.

HS-EVS2-2 Use a model to predict the effects that pollution as a limiting factor has on an organism's population density.

LC-HS-EVS2-2a Recognize the relationship between pollution and its effect on an organism's population size.

LC-HS-EVS2-2b Predict the effects that pollution as a limiting factor has on an organism's population density using a model (e.g., mathematical, diagrams, simulations).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	POLLUTION AND THE ENVIRONMENT	CAUSE AND EFFECT
Modeling in 9-12 builds on K-8	Different organisms have unique tolerances to pollution hazards. Many of the organisms most	Cause and effect
experiences and progresses to using,	tolerant of pollution are the least desirable to humans (e.g., for food, for recreation, for	relationships can be
synthesizing, and developing models	ecosystem services). (HS.EVS2A.b)	suggested and predicted
to predict and show relationships		for complex natural and
among variables between systems	Different organisms (plants and animals) have different abilities to respond to pollution	human-designed
and their components in the natural	hazards (e.g., some organisms can survive in poor water quality with lower oxygen levels).	systems by examining
and designed world(s).	In nature, populations of organisms rarely grow uncontrolled.	what is known about
 Develop and/or use a model 	Each ecosystem has a carrying capacity or number of organisms it can sustain.	smaller scale
(including mathematical and	Carrying capacities in ecosystems are impacted by pollution and can limit the numbers of	mechanisms within the
computational) to generate data to	organisms or populations they can support.	system.
support explanations, predict	Tolerance levels refer to the amount of pollution organisms can handle before dying or	
phenomena, analyze systems and/or	moving to another habitat.	Cause and effect
solve problems.	A system with proportionally dense populations of tolerant organisms indicates poor	relationships can be
	environmental quality.	suggested for complex
Develop or use a model to identify	Many organisms that are most tolerant of pollution are not desired by humans for food	systems (natural and
and describe the components of a	(e.g., aquatic worms) and recreation or are not economically viable.	human-designed) by
system.		examining what is
Develop or use a model to identify		known about smaller
and describe the relationships		scale mechanisms
between the components of a		within the system.
system.		Cause and effect
Develop or use a model to predict		relationships can be
relationships between systems or		predicted for complex
within a system.		systems (natural and
Identify that models can help		human-designed) by

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		examining what is
systems or within a system.		known about smaller
		scale mechanisms
		within the system.
		-

The law of limiting factors is often illustrated as a graphic tolerance curve and can be used to infer the range of tolerance a species has for specific pollution hazards. When combined with real-world data such as field measurements of abiotic factors, these models can be used to help predict the suitability of an ecosystem for a particular species.

HS-EVS2-3 Use multiple lines of evidence to construct an argument addressing the negative impacts that introduced organisms have on Louisiana's native species.

LC-HS-EVS2-3a Evaluate evidence supporting an argument regarding negative impacts of introduced organisms (e.g., zebra mussel, fire ant, nutria) have on Louisiana's native species.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ECOSYSTEM CHANGE	CAUSE AND EFFECT
evidence: Engaging in argument	The introduction of exotic/invasive species causes a disruption in natural ecosystems and can	Cause and effect
from evidence in 9-12 builds on K-8	lead to the loss of native species (i.e., threatened/endangered). (HS.EVS2B.a)	relationships can be
experiences and progresses to using		suggested and predicted
appropriate and sufficient evidence	Invasive species are plants, animals, or other organisms that are introduced to a given area	for complex natural and
and scientific reasoning to defend	outside their original range and cause harm in their new home.	human-designed
and critique claims and explanations	Invasive species can be any kind of a living organism including plant, fungus, or an animal	systems by examining
about natural and designed	species that is not native to an ecosystem.	what is known about
world(s). Arguments may also come	Because there are no natural "enemies," invasive species can spread aggressively and can	smaller scale
from current scientific or historical	become difficult to control as the factors that influence their survival (e.g., diseases and	mechanisms within the
episodes in science.	other organisms) are not present.	system.
 Construct, use, and/or present an 	Some invasive species (e.g., ornamental plants, kudzu) are intentionally or accidentally	
oral and written argument or	released and can cause damage to the ecosystem.	Cause and effect
counterarguments based on data	Invasive species impose great costs to agriculture, forestry, fisheries, and other human	relationships can be
and evidence.	enterprises, as well as to human health.	suggested for complex
		systems (natural and
Construct an oral argument based	Changes in ecosystems impact the availability of natural resources (e.g. sediment starvation,	human-designed) by
on data and evidence.	climate change). (HS.EVS2B.b)	examining what is
Construct a written argument		known about smaller
based on data and evidence.	People compete with each other and other living things for Earth's limited resources.	scale mechanisms
Construct an oral counterargument	Changes in human populations have affected the biodiversity of local organisms and	within the system.
based on data and evidence.	availability of natural resources in given ecosystems (e.g., habitat loss, water quality).	Cause and effect
Construct a written	The availability of natural resources is impacted by the changes in ecosystems.	relationships can be
counterargument based on data	Extracting natural resources can affect ecosystems and the organisms within.	predicted for complex
and evidence.	Sediment starvation is a lack of sediment transport and is often caused by man-made	systems (natural and
	structures such as dams.	human-designed) by

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Movement of sediment is important in providing habitats for fish and other organisms in rivers. Ecosystems undergo major changes as a result of such factors as climate change, introduction of new species, and habitat destruction.	examining what is known about smaller scale mechanisms within the system.

The exotic organisms introduced in Louisiana include plants such as Chinese tallow, kudzu, and water hyacinth, and animals including nutria, Asian tiger mosquitoes, and zebra mussels. These organisms can have impacts on scales ranging from the level of the individual (e.g., competition) to that of the landscape (e.g., the destruction of coastal marshes by nutria).

HS-EVS3-1 Construct and evaluate arguments about the positive and negative consequences of using disposable resources versus reusable resources.

LC-HS-EVS3-1 Evaluate evidence supporting the positive consequences of using disposable resources versus reusable resources.

LC-HS-EVS3-2 Evaluate evidence supporting the negative consequences of using disposable resources versus reusable resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	STEWARDSHIP	ENERGY AND MATTER
evidence: Engaging in argument	Ecosystem sustainability can be used as a model for a sustainable society (e.g., recycling,	Changes of energy and
from evidence in 9-12 builds on K-8	energy efficiency, diversity). (HS.EVS3A.a)	matter in a system can
experiences and progresses to using		be described in terms of
appropriate and sufficient evidence	A sustainable society is one that can continue indefinitely where the level of consumption	energy and matter flows
and scientific reasoning to defend	reflects environmental and resource balance (e.g., not depleting resources).	into, out of, and within
and critique claims and explanations	A healthy ecosystem is one in which plant and animal populations interact in balance with	that system.
about natural and designed	each other and abiotic factors (e.g., rocks, soil, and water).	
world(s). Arguments may also come	Complex systems are systems composed of many different components.	The processes of energy
from current scientific or historical	A sustainable human society relies upon natural resources (such as energy, fauna, wood, or	transformation and
episodes in science.	water), socioeconomic resources (such as labor or capital), and cultural resources (arts,	energy transfer can be
• Evaluate the claims, evidence,	beliefs, institutions).	used to understand the
and/or reasoning behind currently	As in any ecosystem, a sustainable human society is based on preservation, protection, or	changes that take place
accepted explanations or solutions	restoration of the natural environment as well as the human ecosystem.	in physical systems.
to determine the merits of		
arguments.	Louisiana citizens are responsible for conserving our state's natural resources. Personal	
	actions can have a positive or negative impact. (HS.EVS3A.b)	
Evaluate the claims behind		
currently accepted explanations to	Resources are features of environments that are important and of value to humans in some	
determine the merits of arguments.	form.	
Evaluate the claims behind	Protecting the environment and biodiversity helps sustain human life.	
currently accepted solutions to	Each citizen of Louisiana is responsible for conserving the state's natural resources to ensure	
determine the merits of arguments.	that all citizens can have a healthy standard of living (e.g., clean air and water) and the	
Evaluate the evidence behind	state's ecosystems are sustained.	
currently accepted explanations to	Reducing, reusing, and recycling materials help to conserve natural resources.	
determine the merits of arguments.	The quality of the lives of future generations may depend on people's use of natural	
Evaluate the evidence behind	resources today.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
currently accepted solutions to determine the merits of arguments. Evaluate the reasoning behind currently accepted explanations to determine the merits of arguments. Evaluate the reasoning behind currently accepted solutions to determine the merits of arguments.	Each citizen can make lifestyle choices that reduce the use of the Earth's natural resources. Each citizen can reduce his or her demand on natural resources by recycling (replace and reuse products). Personal actions can have a positive impact on the state's natural resources (e.g., using public transportation and reducing demand for oil). Personal actions can have a negative impact on the state's natural resources (e.g., not recycling paper products or cans).	
• Construct, use, and/or present an oral and written argument or counterarguments based on data and evidence.		
Construct an oral argument based on data and evidence. Construct a written argument based on data and evidence. Construct an oral counterargument based on data and evidence. Construct a written counterargument based on data and evidence and evidence.		

Resources can be both natural and man-made and may include renewable and non-renewable energy sources, soil, ecosystems, forestry, fisheries, plastic, paper, or aluminum products. Energy used to create and dispose of products may also be considered.

HS-ESS2-2 Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth's systems. LC-HS-ESS2-2a Identify relationships, using a model, of how the Earth's surface is a complex and dynamic set of interconnected systems (i.e., geosphere, hydrosphere, atmosphere, and biosphere).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EARTH MATERIALS AND SYSTEMS	STABILITY AND CHANGE
Analyzing data in 9-12 builds on K-8	Earth's systems, being dynamic and interacting, include feedback effects that can increase or	Feedback (negative or
experiences and progresses to	decrease the original changes. (HS.ESS2A.a)	positive) can stabilize or
introducing more detailed statistical		destabilize a system.
analysis, the comparison of data	Earth's systems are dynamic and interacting.	
sets for consistency, and the use of	Earth has interconnected spheres: lithosphere or geosphere, hydrosphere, biosphere,	Stability denotes a
models to generate and analyze	atmosphere and cryosphere.	condition in which a
data.	Changes in one system can cause changes to other systems.	system is in balance.
 Analyze data using tools, 	Rates of change of Earth's internal and surface processes occur over very short and very	A feedback loop is any
technologies, and/or models (e.g.,	long periods of time.	mechanism in which a
computational, mathematical) in	Many complex linkages and feedbacks among erosional and climatic processes in addition	condition triggers some
order to make valid and reliable	to tectonic ones change Earth's systems.	action that causes a
scientific claims or determine an	Such complexities include feedback, stabilizing or destabilizing links between component	change in that same
optimal design solution.	processes.	condition.
	A change in one sphere can cause changes to other spheres, resulting in positive or negative	The mechanisms of
Analyze data using tools in order to	feedback loops.	external controls and
make valid and reliable scientific		internal feedback loops
claims.	WEATHER AND CLIMATE	are important elements
Analyze data using tools in order to	The foundation for Earth's global climate systems is the electromagnetic radiation from the	for a stable system.
determine an optimal design	sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere,	A change in one part of
solution.	hydrosphere, and land systems, and this energy's re-radiation into space. (HS.ESS2D.a)	a system can cause
Analyze data using technology in		changes to other parts
order to make valid and reliable	Sunlight is a portion of the electromagnetic radiation given off by the sun.	of the system, resulting
scientific claims.	Energy from the sun travels to Earth and heats Earth's surface.	in positive or negative
Analyze data using technology in	Some of this energy is radiated back into Earth's atmosphere.	feedback loops.
order to determine an optimal	The sun's energy drives Earth's climate systems.	The changes (negative

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
design solution.	Uneven heating of Earth's components (i.e., water, land, and air) produces local and global	or positive) can stabilize
Analyze data using models in order	atmospheric and oceanic movement.	or destabilize a system.
to make valid and reliable scientific	Heat energy stored in the oceans and transferred by currents influence climate.	
claims.		
Analyze data using models in order		
to determine an optimal design		
solution.		

Examples could include climate feedbacks such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice which reduces the amount of sunlight reflected from Earth's surface increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how damned rivers increase ground water recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.

HS-ESS2-4 Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems result in changes in atmosphere and climate.

LC-HS-ESS2-4a Identify different causes of climate change and results of those changes with respect to the Earth's surface temperatures, precipitation patterns or sea levels over a wide range of temporal and spatial scales using a model.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EARTH AND THE SOLAR SYSTEM	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Cyclical changes in the shape of Earth's orbit around the sun, together with changes in the tilt	Empirical evidence is
experiences and progresses to	of the planet's axis of rotation, both occurring over hundreds of thousands of years, have	required to differentiate
introducing more detailed statistical	altered the intensity and distribution of sunlight falling on Earth. These phenomena cause a	between cause and
analysis, the comparison of data	cycle of ice ages and other gradual climate changes. (HS.ESS1B.b)	correlation and make
sets for consistency, and the use of		claims about specific
models to generate and analyze	Gradual changes in the shape of Earth's orbit around the sun contributes to phenomena	causes and effects.
data.	causing ice ages and other gradual climate changes.	
 Analyze data using tools, 	Earth's global temperatures can warm up or cool down if the amount of sunlight that enters	Evidence is required
technologies, and/or models (e.g.,	the atmosphere is significantly altered.	when attributing an
computational, mathematical) in	Cyclic variations of Earth's orbit around the sun impact the amount of sunlight that reaches	observed phenomenon
order to make valid and reliable	Earth's surface.	to a specific cause.
scientific claims or determine an	Gradual changes to the tilt of Earth's axis relative to its orbit around the sun have produced	Evidence is required to
optimal design solution.	different weather patterns.	explain the causal
		mechanisms in a system
Analyze data using tools in order to	EARTH MATERIALS AND SYSTEMS	under study.
make valid and reliable scientific	The geological record shows that changes to global and regional climate can be caused by	Evidence is required to
claims.	interactions among changes in the sun's energy output or Earth's orbit, tectonic events,	support a claim about
Analyze data using tools in order to	hydrosphere circulation, volcanic activity, glaciers, vegetation, and human activities. These	the causal mechanisms
determine an optimal design	changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to	in a system under
solution.	intermediate (ice ages) to very long-term tectonic cycles. (HS.ESS2A.d)	study.
Analyze data using technology in		
order to make valid and reliable	All Earth processes are the result of energy flowing and matter cycling within and among	
scientific claims.	Earth's systems.	
Analyze data using technology in	Changes to climate occur over a wide range of temporal and spatial scales.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
order to determine an optimal	The geological record (ice cores, sediment deposits, fossil evidence, and paleo vegetation	
design solution.	restorations) shows that changes to global and regional climate can be caused by several	
Analyze data using models in order	factors (Earth's orbit, tectonic events, volcanic glaciers, vegetation, etc.).	
to make valid and reliable scientific	Changes to the input, output, storages or redistribution of energy on Earth can occur over a	
claims.	short or extended time frame and can cause extreme weather conditions.	
Analyze data using models in order		
to determine an optimal design	WEATHER AND CLIMATE	
solution.	The foundation for Earth's global climate systems is the electromagnetic radiation from the	
	sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere,	
	hydrosphere and land systems, and this energy's re-radiation into space. (HS.ESS2D.a)	
	Sunlight is a portion of the electromagnetic radiation given off by the sun.	
	Energy from the sun travels to Earth and heats Earth's surface.	
	Some of this energy is radiated back into Earth's atmosphere.	
	The sun's energy drives Earth's climate systems.	
	Uneven heating of Earth's components (i.e., water, land, air) produce local and global	
	atmospheric and oceanic movement.	
	Heat energy stored in the oceans and transferred by currents influence climate.	
	Gradual atmospheric changes were due to plants and other organisms that captured carbon	
	dioxide and released oxygen. (HS.ESS2D.b)	
	Plants contribute to the make-up of Earth's atmosphere by absorbing carbon dioxide and	
	releasing oxygen.	
	Carbon continuously cycles from one sphere to another.	
	In the past, the relative amount of carbon that cycled through the hydrosphere,	
	atmosphere, lithosphere or geosphere, and biosphere was partially due to the activity of plants and other organisms.	
	Changes in the atmosphere due to human activity have increased carbon dioxide	
	concentrations and thus affect climate. (HS.ESS2D.c)	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Human activities that add carbon dioxide to the atmosphere may be warming Earth's atmosphere. A large amount of carbon dioxide has been released into Earth's atmosphere by human-related fossil fuel combustion. An increase in atmospheric carbon can increase the amount of heat energy stored in the system.	

Changes differ by timescale, from sudden (large volcanic eruption, hydrosphere circulation) to intermediate (hydrosphere circulation, solar output, human activity) and long-term (Earth's orbit and the orientation of its axis and changes in atmospheric composition). Examples of human activities could include fossil fuel combustion, cement production, or agricultural activity and natural processes such as changes in incoming solar radiation or volcanic activity. Examples of data can include tables, graphs, maps of global and regional temperatures, and atmospheric levels of gases.

HS-ESS2-5 Plan and conduct an investigation on the properties of water and its effects on Earth materials and surface processes.

LC-HS-ESS2-5a Identify a connection between the properties of water and its effects on Earth materials.

LC-HS-ESS2-5b Investigate the effects of water on Earth materials and/or surface processes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	THE ROLE OF WATER IN EARTH'S SURFACE PROCESSES	STRUCTURE AND
investigations: Planning and	The abundance of liquid water on Earth's surface and its unique combination of physical and	FUNCTION
carrying out investigations to	chemical properties are central to the planet's dynamics. These properties include water's	The functions and
answer questions (science) or test	exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight,	properties of natural
solutions (engineering) to problems	expand upon freezing, dissolve and transport materials, and lower the viscosities and melting	and designed objects
in 9-12 builds on K-8 experiences	points of rocks. (HS.ESS2C.a)	and systems can be
and progresses to include		inferred from their
investigations that provide evidence	Water has many unique properties (e.g., capacity to absorb, store, and release large	overall structure, the
for and test conceptual,	amounts of energy; to expand upon freezing; to dissolve and transport many materials) that	way their components
mathematical, physical, and	play a role in how it affects Earth systems (e.g., ocean thermal capacity contributes to	are shaped and used,
empirical models.	moderating temperature variations, ice expansion contributes to rock erosion).	and the molecular
 Plan an investigation (science) or 	Water exhibits a polar nature due to its molecular structure.	substructures of its
test a design (engineering)	Patterns of temperature, the movement of air, and the movement and availability of water	various materials.
individually and collaboratively to	at Earth's surface can be related to the effect of the properties of water on energy transfer.	
produce data to serve as the basis	Mechanical effects of water (e.g., stream transportation and deposition, erosion using	There are relationships
for evidence as part of building and	variations in soil moisture content, and expansion of water as it freezes) on Earth's	between structure and
revising models, supporting	materials can be used to infer the effect of water on Earth's surface properties.	function of natural and
explanations for phenomena, or	Chemical effects of water (e.g., properties of solubility, the reaction of water on iron) on	designed objects.
testing solutions to problems.	Earth materials can be used to infer the effect of water on Earth's surface processes.	There are relationships
Consider possible confounding		between structure and
variables or effects and evaluate the		function of systems.
investigation's design to ensure		Relationships between
variables are controlled.		structure and function
		can be inferred from
Plan an investigation (science)		their overall structure.
individually and collaboratively to		Relationships between
produce data to serve as the basis		structure and function

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
for evidence as part of building and		can be inferred from the
revising models. Consider possible		way their components
confounding variables or effects		are shaped.
and evaluate the investigation's		Relationships between
design to ensure variables are		structure and function
controlled.		can be inferred from the
Test a design (engineering)		molecular substructures
individually and collaboratively to		of its various materials.
produce data to serve as the basis		
for evidence as part of building and		
revising models. Consider possible		
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		
controlled.		
Plan an investigation (science)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for supporting		
explanations for phenomena.		
Consider possible confounding		
variables or effects and evaluate		
the investigation's design to ensure		
variables are controlled.		
Test a design (engineering)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for supporting		
explanations for phenomena.		
Consider possible confounding		
variables or effects and evaluate		
the investigation's design to ensure		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
variables are controlled.		
Plan an investigation (science		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for testing solutions to		
problems. Consider possible		
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		
controlled.		
Test a design (engineering)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for testing solutions to		
problems. Consider possible		
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		
controlled.)		

Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).

HS-ESS2-6 Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

LC-HS-ESS2-6a Use a model of photosynthesis to identify that carbon is exchanged between living and nonliving systems.

LC-HS-ESS2-6b Use a model of cellular respiration to identify that carbon is exchanged between living and nonliving systems.

LC-HS-ESS2-6c Develop and/or use a quantitative model to identify relative amount of and/or the rate at which carbon is transferred among hydrosphere, atmosphere, geosphere, and biosphere.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	WEATHER AND CLIMATE	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Gradual atmospheric changes were due to plants and other organisms that captured carbon	The total amount of
experiences and progresses to using,	dioxide and released oxygen. (HS.ESS2D.b)	energy and matter in
synthesizing, and developing models		closed systems is
to predict and show relationships	Plants contribute to the make-up of Earth's atmosphere by absorbing carbon dioxide and	conserved.
among variables between systems	releasing oxygen.	
and their components in the natural	Carbon continuously cycles from one sphere to another.	When materials
and designed worlds.	In the past, the relative amount of carbon that cycled through the hydrosphere,	interact within a closed
 Develop a model based on 	atmosphere, lithosphere or geosphere, and biosphere was partially due to the activity of	system, the total mass
evidence to illustrate	plants and other organisms.	of the system remains
the relationships between systems		the same. Energy may
or between	Changes in the atmosphere due to human activity have increased carbon dioxide	change forms, but the
components of a system.	concentrations and thus affect climate. (HS.ESS2D.c)	total amount of energy
		cannot change in
Develop a model based on evidence	Human activities that add carbon dioxide to the atmosphere may be warming Earth's	physical systems.
to illustrate the relationships	atmosphere.	
between systems.	A large amount of carbon dioxide has been released into Earth's atmosphere by human-	
Develop a model based on evidence	related fossil fuel combustion.	
to illustrate the components of a	An increase in atmospheric carbon can increase the amount of heat energy stored in the	
system.	system.	

Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.

Performance Expectation and Louisiana Connectors

HS-ESS3-1 Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.

LC-HS-ESS3-1a Explain the relationship between human activity (e.g., population size, where humans live, types of crops grown) and changes in the amounts of natural resources using evidence.

LC-HS-ESS3-1b Explain the relationship between human activity (e.g., population size, where humans live, types of crops grown) and changes in the occurrence of natural hazards using evidence.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL RESOURCES	CAUSE AND EFFECT
designing solutions: Constructing	Resource availability has guided the development of human society. (HS.ESS3A.a)	Empirical evidence is
explanations (science) and designing		required to differentiate
solutions (engineering) in 9-12	The availability of natural resources has influenced where humans have populated regions	between cause and
builds on K-8 experiences and	of Earth.	correlation and make
progresses to explanations and	Environmental factors have affected human populations over the course of history.	claims about specific
designs that are supported by	Resource availability has driven global development of societies, sizes of human	causes and effects.
multiple and independent student-	populations, and human migrations.	
generated sources of evidence	Evidence (e.g., from text or other investigations) show correlations between human	Evidence is required
consistent with scientific ideas,	population distribution and regional availability of resources such as fresh water, fertile	when attributing an
principles, and theories.	soils, and fossils fuels.	observed phenomenon
Construct an explanation based on		to a specific cause.
valid and reliable evidence obtained	NATURAL HAZARDS	Evidence is required to
from a variety of sources (including	Natural hazards and other geologic events have shaped the course of human history; [they]	explain the causal
students' own investigations,	have significantly altered the sizes of human populations and have driven human migrations.	mechanisms in a system
models, theories, simulations, peer	(HS.ESS3B.a)	under study.
review) and the assumption that		Evidence is required to
theories and laws that describe the	Natural hazards such as earthquakes, tsunamis, volcanic eruptions, severe weather, floods,	support a claim about
natural world operate today as they	and coastal erosion, have historically affected the sizes and distributions of human	the causal mechanisms
did in the past and will continue to	populations.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
do so in the future.	Environmental factors have affected human populations over the course of history.	in a system under
	Natural disasters and other geologic events have driven global development of societies,	study.
Construct an explanation based on	sizes of human populations, and human migrations.	
valid and reliable evidence from a	Historical accounts of natural disasters (e.g., Krakatoa eruption, American Dust Bowl, Super	
variety of sources.	storm Sandy, and Hurricane Katrina), resulting human suffering and loss of life could	
Construct an explanation based on	provide empirical evidence of past impacts on human population size and distribution.	
valid and reliable evidence from the		
assumption that theories and laws		
that describe the natural world		
operate today as they did in the		
past and will continue to do so in		
the future.		
Revise an explanation based on		
valid and reliable evidence from a		
variety of sources.		
Revise an explanation based on		
valid and reliable evidence from the		
assumption that theories and laws		
that describe the natural world		
operate today as they did in the		
past and will continue to do so in		
the future.		

Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Natural hazards and other geologic events exhibit some non-random patterns of occurrence. Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.

HS-ESS3-2 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. LC-HS-ESS3-2a Identify a solution that demonstrates the most preferred cost-benefit ratios for developing, managing, and utilizing energy and mineral resources (i.e., conservation, recycling, and reuse of resources).

LC-HS-ESS3-2b Compare design solutions for developing, managing, and/or utilizing energy or mineral resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL RESOURCES	SYSTEMS AND SYSTEM
designing solutions: Constructing	All forms of energy production and other resource extraction have associated economic,	MODELS
explanations (science) and designing	social, environmental, and geopolitical costs and risks as well as benefits. New technologies	Systems can be
solutions (engineering) in 9-12	and social regulations can change the balance of these factors. (HS.ESS3A.b)	designed to do specific
builds on K-8 experiences and		tasks.
progresses to explanations and	Anything in the environment that is naturally occurring and used by people is a natural	
designs that are supported by	resource.	Systems can be
multiple and independent student-	Demand for energy by society leads to continuous exploration in order to expand supplies of	designed to explain
generated sources of evidence	fossil fuels.	phenomena (scientific).
consistent with scientific ideas,	The increase in energy demand and the new technologies being developed to meet these	Systems can be
principles, and theories.	needs and improve the efficiencies of energy systems have social and environmental	designed to refine
 Design, evaluate, and/or refine a 	consequences.	solutions (engineering).
solution to a complex real-world	New technologies of energy production are being developed. For example, the technique of	Systems can be
problem, based on scientific	using hydraulic fracturing to extract natural gas from shale deposits versus other traditional	designed for
knowledge, student-generated	means of acquiring energy from natural resources.	understanding and
sources of evidence, prioritized	New technologies could have deep impacts on society and the environment, including some	testing ideas that are
criteria, and tradeoff considerations.	that were not anticipated.	applicable throughout
	New technologies are being developed to increase the use of alternate energy sources.	science and
Design a solution to a complex real-		engineering.
world problem, based on scientific	DESIGNING SOLUTIONS TO ENGINEERING PROBLEMS	
knowledge, student-generated	When evaluating solutions, it is important to take into account a range of constraints,	
sources of evidence, prioritized	including cost, safety, reliability, and aesthetics, and to consider social, cultural, and	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
criteria, and trade-off considerations.	environmental impacts. (HS.ETS1B.a)	
Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and trade-off considerations. Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and trade-off considerations.	It is important to determine the full impact of the advantages and disadvantages when evaluating a solution. New technologies offer solutions based on cost-benefit ratios, scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g., economic, societal, environmental, and ethical considerations).	

Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural, soil use, forestry, and mining (coal, tar sands, and oil shales), and pumping (ground water, petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.

HS-ESS3-3 Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

LC-HS-ESS3-3 Use numerical data to determine the effects of a conservation strategy to manage natural resources and to sustain human society and plant and animal life.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	HUMAN IMPACTS ON EARTH SYSTEMS	STABILITY AND CHANGE
computational thinking:	The sustainability of human societies and the biodiversity that supports them requires	Change and rates of
Mathematical and computational	responsible management of natural resources. (HS.ESS3C.a)	change can be
thinking in 9-12 builds on K-8		quantified and modeled
experiences and progresses to using	Responsible use of energy requires consideration of energy availability, efficiency of its use,	over very short or very
algebraic thinking and analysis, a	the environmental impact, and possible alternate sources.	long periods of time.
range of linear and nonlinear	Poor management of natural resources can have negative impacts on human populations.	Some system changes
functions (e.g., trigonometric,		are irreversible.
exponential and logarithmic) and		
computational tools for statistical		Change and rates of
analysis to analyze, represent, and		change can be
model data. Simple computational		quantified over very
simulations are created and used		short or very long
based on mathematical models of		periods of time.
basic assumptions.		Change and rates of
Create a computational model or		change can be modeled
simulation of a phenomenon,		over very short or very
designed device, process, or system.		long periods of time.
		Some system changes
Create/use a computational model		are irreversible.
of a phenomenon.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Revise a computational model of a		
phenomenon.		
Create/use a simulation of a		
phenomenon.		
Revise a simulation of a		
phenomenon.		
Create/use a computational model		
of a process.		
Revise a computational model of a		
process.		
Create/use a simulation of a		
process.		
Revise a simulation of a process.		
Create/use a computational model		
of a system.		
Revise a computational model of a		
system.		
Create/use a simulation of a		
system.		
Revise a simulation of a system.		

Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).

HS-ESS3-4 Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.

LC-HS-ESS3-4a Connect a technological solution (e.g., wet scrubber; baghouse) to its outcome (e.g., clean air) and its outcome to the human activity impact that it is reducing (e.g., air pollution).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	HUMAN IMPACTS ON EARTH SYSTEMS	STABILITY AND CHANGE
designing solutions: Constructing	Scientists and engineers can make major contributions by developing technologies that	Feedback (negative or
explanations (science) and designing	produce less pollution and waste and that preclude ecosystem degradation. (HS.ESS3C.b)	positive) can stabilize or
solutions (engineering) in 9-12		destabilize a system.
builds on K-8 experiences and	Scientists and engineers can develop technological solutions to reduce human impacts on	
progresses to explanations and	natural systems.	Stability denotes a
designs that are supported by	Societal expectations for a sustainable environment will require new, cleaner technologies	condition in which a
multiple and independent student-	for the production and use of energy.	system is in balance.
generated sources of evidence		A feedback loop is any
consistent with scientific ideas,	DESIGNING SOLUTIONS TO ENGINEERING PROBLEMS	mechanism in which a
principles, and theories.	When evaluating solutions, it is important to take into account a range of constraints,	condition triggers some
Design or refine a solution to a	including cost, safety, reliability, and aesthetics, and to consider social, cultural, and	action that causes a
complex real-world problem, based	environmental impacts. (HS.ETS1B.a)	change in that same
on scientific knowledge, student		condition.
generated sources of evidence,	It is important to determine the full impact of the advantages and disadvantages when	The mechanisms of
prioritized criteria, and tradeoff	evaluating a solution.	external controls and
considerations.	New technologies offer solutions based on cost benefit ratios, scientific ideas and principles,	internal feedback loops
	empirical evidence, and logical arguments regarding relevant factors (e.g., economic,	are important elements
Design a solution to a complex real-	societal, environmental, and ethical considerations).	for a stable system.
world problem, based on scientific	When scientists and engineers create solutions to problems, they use specific criteria to	A change in one part of
knowledge, student-generated	guide the development of their solutions.	a system can cause
sources of evidence, prioritized		changes to other parts
criteria, and tradeoff		of the system, resulting

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
considerations. Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff	When scientists and engineers create solutions to problems, they consider the constraints of their design solutions including cost, safety, aesthetics, and reliability.	in positive or negative feedback loops. The changes (negative or positive) can stabilize or destabilize a system.
considerations. Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.		

Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).

HS-ESS3-5 Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.

LC-ESS3-5a Use geoscience data to determine the relationship between a change in climate (e.g., precipitation, temperature) and its impact in a region.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	GLOBAL CLIMATE CHANGE	STABILITY AND CHANGE
Analyzing data in 9-12 builds on K-8	Though the magnitudes of human impacts are greater than they have ever been, so too are	Change and rates of
experiences and progresses to	human abilities to model, predict, and manage current and future impacts. (HS.ESS3D.a)	change can be
introducing more detailed statistical		quantified and modeled
analysis, the comparison of data	Technological advances throughout history have led to the discovery and use of different	over very short or long
sets for consistency, and the use of	forms of energy and to more efficient use of all forms of energy.	periods of time. Some
models to generate and analyze	The increase in energy demand and the new technologies being developed to meet these	system changes are
data.	needs and improve the efficiencies of energy systems have social and environmental	irreversible.
 Analyze data using tools, 	consequences.	
technologies, and/or models (e.g.,	Changes in weather technology have occurred in the areas of gathering weather data and	Change and rates of
computational, mathematical) in	using computers to make forecasts.	change can be
order to make valid and reliable	This has allowed scientists to model, predict, and manage current and future impacts using	quantified over very
scientific claims or determine an	global climate models.	short or very long
optimal design solution.	Geoscience data is used to explain climate change over a wide-range of timescales	periods of time.
	including:	Change and rates of
Analyze data using tools in order to	• one to ten years: large volcanic eruptions, ocean circulation;	change can be modeled
make valid and reliable scientific	• ten to hundreds of years: changes in human activity, ocean circulation, solar output;	over very short or very
claims.	• tens of thousands to hundreds of thousands of years: changes to Earth's orbit and the	long periods of time.
Analyze data using tools in order to	orientation of its axis; and	Some system changes
determine an optimal design	• tens of millions to hundreds of millions of years: long-term changes in atmospheric	are irreversible.
solution.	composition.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyze data using technology in		
order to make valid and reliable		
scientific claims.		
Analyze data using technology in		
order to determine an optimal		
design solution.		
Analyze data using models in order		
to make valid and reliable scientific		
claims.		
Analyze data using models in order		
to determine an optimal design		
solution.		

Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).

HS-ESS3-6 Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

LC-HS-ESS3-6a Use representations to describe the relationships among Earth systems and how those relationships are being modified due to human activity (e.g., increase in atmospheric carbon dioxide, increase in ocean acidification, effects on organisms in the ocean (coral reef), carbon cycle of the ocean, possible effects on marine populations).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WEATHER AND CLIMATE	SYSTEMS AND SYSTEM
computational thinking:	Current models predict that, although future regional climate changes will be complex and	MODELS
Mathematical and computational	varied, average global temperatures will continue to rise. The outcomes predicted by global	When investigating or
thinking in 9-12 builds on K-8	climate models strongly depend on the amounts of human-generated greenhouse gases	describing a system, the
experiences and progresses to using	added to the atmosphere each year and by the ways in which these gases are absorbed by the	boundaries and initial
algebraic thinking and analysis, a	ocean and biosphere. (HS.ESS2D.d)	conditions of the system
range of linear and nonlinear		need to be defined and
functions (e.g., trigonometric,	Current models of Earth's natural systems include system boundaries, initial conditions,	their inputs and outputs
exponential and logarithmic) and	inputs and outputs, and relationships that determine the interaction (e.g., the relationship	analyzed and described
computational tools for statistical	between atmospheric carbon dioxide and production of photosynthetic biomass and ocean	using models.
analysis to analyze, represent, and	acidification).	
model data. Simple computational	The increased carbon dioxide level in the atmosphere traps more heat. This will lead to a	When investigating a
simulations are created and used	gradual increase in the temperature of Earth's atmosphere.	system, the boundaries
based on mathematical models of	Human activities, such as the release of greenhouse gases from burning fossil fuels, are	and initial conditions of
basic assumptions.	major factors in the current rise in Earth's mean surface temperature.	the system need to be
Use a computational	Based on current models, Earth's average global temperatures will continue to rise due to	defined.
representation of phenomena or	an increase in human-generated greenhouse gases (e.g., carbon dioxide and methane) in	When describing a
design solutions to describe and/or	Earth's atmosphere and associated feedbacks.	system, the boundaries
support claims and/or explanations.	Human impact on climate change must be addressed.	and initial conditions of
	Reducing the level of climate change and reducing human vulnerability to whatever climate	the system need to be
Use a computational	changes do occur depend on the understanding of climate science and engineering	defined.
representation of phenomena to	capabilities.	When investigating a
describe claims.		system, the inputs and

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Use a computational representation of phenomena to describe explanations. Use a computational representation of phenomena to support claims. Use a computational representation of phenomena to support explanations. Use a computational representation of a design solution to describe claims. Use a computational representation of a design solution to describe explanations. Use a computational representation of a design solution to describe explanations. Use a computational representation of a design solution to support claims. Use a computational representation of a design solution to support explanations.	Important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities (e.g., through computer simulations and other discoveries satellite imagery). (HS.ESS3D.b) Scientists continually learn more about how Earth's systems interact and are changed by human activities. Modern civilization depends on major technological systems. Through computer simulations and other studies, important discoveries are still being made about how the ocean, atmosphere, and biosphere interact and are modified in response to human activities. Scientists and engineers use human-generated models including computer simulations, to predict how the amount of greenhouse gases in Earth's atmosphere impacts the biological and physical processes on Earth (e.g., oceanic acidification, coral bleaching, ocean circulation, etc.).	outputs need to be analyzed and described using models. When describing a system, the inputs and outputs need to be analyzed and described using models.

Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.

HS-LS2-1 Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity, biodiversity and populations of ecosystems at different scales.

LC-HS-LS2-1a Recognize that the carrying capacities of ecosystems are related to the availability of living and nonliving resources and challenges (e.g., predation, competition, disease).

LC-HS-LS2-1b Use a graphical representation to identify carrying capacities in ecosystems as limits to the numbers of organisms or populations they can support.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	SCALE, PROPORTION,
computational thinking:	Ecosystems have carrying capacities, which are limits to the numbers of organisms and	AND QUANTITY
Mathematical and computational	populations they can support. These limits result from such factors as the availability of living	The significance of a
thinking in 9-12 builds on K-8	and nonliving resources and from such challenges as predation, competition, and disease that	phenomenon is
experiences and progresses to using	affect biodiversity, including genetic diversity within a population and species diversity within	dependent on the scale,
algebraic thinking and analysis, a	an ecosystem. Organisms would have the capacity to produce populations of great size were	proportion, and quantity
range of linear and nonlinear	it not for the fact that environments and resources are finite. This fundamental tension	at which it occurs.
functions (e.g., trigonometric,	affects the abundance (number of individuals) of species in any given ecosystem. (HS.LS2A.a)	
exponential		The size and time scales
and logarithmic) and computational	Carrying capacities are limits to the numbers of organisms and populations an ecosystem	relevant to various
tools for statistical analysis to	can support.	objects, systems, and
analyze, represent, and model data.	The carrying capacity for a specific population in an ecosystem depends on the resources	processes determine
Simple computational simulations	available.	the significance of a
are created and used based on	These limits can be a result of shifting living (predators, competition, and available food)	phenomena. Specific
mathematical models of basic	and non-living (shelter, water, and climate) factors within a specific environment.	phenomena correspond
assumptions.	Given adequate biotic and abiotic resources and no disease or predators, populations	to a specific scale (e.g.,
 Use mathematical, computational, 	increase at rapid rates.	the size of the nucleus
and/or algorithmic representations	Resources, (limiting factors), predation and climate, limit the growth of populations in	of an atom to the size
of phenomena or design solutions to	specific niches in an ecosystem.	
describe and/or support claims		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and/or explanations.	Human activity directly and indirectly affect biodiversity and ecosystem health (e.g., habitat	of the galaxy and
	fragmentation, introduction of nonnative or invasive species, overharvesting, pollution and	beyond).
Use mathematical or algorithmic	climate change). (HS.LS2A.b)	
forms for scientific modeling of		
phenomena to describe claims.	Humans are an integral part of the natural system, and human activities can alter the	
Use mathematical or algorithmic	stability of ecosystems.	
forms for scientific modeling of	Human-related changes to one or more of these factors can result in an ecosystem breaking	
design solutions to describe claims.	down or the creation of an entirely new ecosystem.	
Use mathematical or algorithmic	Human activities have a major effect on other species. For example, increased land use	
forms for scientific modeling of	reduces habitat available to other species, pollution changes the chemical composition of	
phenomena to support claims.	air, soil, and water, and introduction of non-native species disrupts the ecological balance.	
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate and competition. Examples of mathematical comparisons could include graphs, charts, histograms, or population changes gathered from simulations or historical data sets.

Performance Expectation and Louisiana Connectors

HS-LS2-4 Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. *LC-HS-LS2-4a* Use a graphical or mathematical representation to identify the changes in the amount of matter as it travels through a food web. *LC-HS-LS2-4b* Use a graphical or mathematical representation to identify the changes in the amount of energy as it travels through a food web.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	CYCLES OF MATTER AND ENERGY TRANSFER IN ECOSYSTEMS	ENERGY AND MATTER:
computational thinking:	Energy is inefficiently transferred from one trophic level to another that affect the relative	FLOWS, CYCLES,
Mathematical and computational	number of organisms that can be supported at each trophic level and necessitates a constant	AND CONSERVATION
thinking in 9-12 builds on K-8	input of energy from sunlight or inorganic compounds from the environment. (HS.LS2B.b)	Energy cannot be
experiences and progresses to using		created or destroyed—it
algebraic thinking and analysis, a	Only a fraction of the energy available at the lower level of a food web is transferred up,	only moves between
range of linear and nonlinear	resulting in fewer organisms at higher levels.	one place and another
functions (e.g., trigonometric,	The inefficiency of energy transfer determines the number of trophic levels and affects the	place, between objects
exponential	relative number of organisms at each trophic level in an ecosystem.	and/or fields, or
and logarithmic) and computational	All energy is conserved as it passes from the sun through an ecosystem.	between systems.
tools for statistical analysis to	During energy transformations, some energy is converted to unusable heat.	
analyze, represent, and model data.	A continual input of energy from the sun keeps the process going.	Energy cannot be
Simple computational simulations	On average, regardless of scale, 10% of energy is transferred up from one trophic level to	created or destroyed.
are created and used based on	another.	Energy can be
mathematical models of basic		transferred from one
assumptions.	Photosynthesis, cellular respiration, decomposition and combustion are important	object to another and
• Use mathematical, computational,	components of the carbon cycle, in which carbon is exchanged among the biosphere,	can be transformed
and/or algorithmic representations	atmosphere, hydrosphere, and geosphere through chemical, physical, geological, and	from one form to
of phenomena or design solutions to	biological processes. (HS.LS2B.c)	another, but the total

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
describe and/or support claims		amount of energy never
and/or explanations.	Carbon is an essential element cycled through all levels of life from cellular to ecosystems,	changes.
	and is required for survival of all living organisms.	
Use mathematical or algorithmic	Photosynthesis (the main way that solar energy is captured and stored on Earth) and	
forms for scientific modeling of	cellular respiration are important components of the carbon cycle, in which carbon is	
phenomena to describe claims.	exchanged between living and nonliving systems.	
Use mathematical or algorithmic	Matter needed to sustain life in ecosystems is continually recycled (e.g., carbon cycle, water	
forms for scientific modeling of	cycle, nitrogen cycle, mineral cycles) among organisms and between organisms and the	
design solutions to describe claims.	environment.	
Use mathematical or algorithmic		
forms for scientific modeling of	Photosynthesis, chemosynthesis, aerobic and anaerobic respiration and cellular respiration	
phenomena to support claims.	(including anaerobic processes) provide most of the energy for life processes. Environmental	
Use mathematical or algorithmic	conditions restrict which and when reactions can occur. (HS.LS2B.a) (suggested extension)	
forms for scientific modeling of		
design solutions to support claims.	The processes of photosynthesis (making oxygen and sugars) and cellular respiration	
Use mathematical or algorithmic	(making energy from sugar, done in plants and animals) provide most of the energy for life	
forms for scientific modeling of	on earth.	
phenomena to describe	The reactants and products of photosynthesis and cellular respiration (aerobic and	
explanations.	anaerobic) can be used to relate the Law of Conservation of Matter and the Law of	
Use mathematical or algorithmic	Conservation of Energy to ecosystems, using the carbon cycle can as a reference.	
forms for scientific modeling of		
design solutions to describe explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.

Performance Expectation and Louisiana Connectors

HS-LS2-6 Evaluate the claims, evidence and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.

HS-LS2-6a Use evidence to identify how modest biological or physical changes versus extreme changes affect stability and change (e.g., number and types of organisms) in ecosystems.

HS-LS2-6b Evaluate explanations of how living things in an ecosystem are affected by changes in the environment (e.g., changes to the food supply, climate change, or the introduction of predators).

HS-LS2-6c Evaluate explanations of how interactions in ecosystems maintain relatively stable conditions, but changing conditions may result in a new ecosystem.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
evidence: Engaging in argument	The dynamic interactions within an ecosystem can keep its numbers and types of organisms	Much of science deals
from evidence in 9-12 builds on K-8	relatively constant over long periods of time under stable conditions. If a modest biological or	with constructing
experiences and progresses to using	physical disturbance to an ecosystem occurs, it may return to its more or less original status	explanations of how
appropriate and sufficient evidence	(i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme	things change and how
and scientific reasoning to defend	fluctuations in conditions or the size of any population, however, can challenge the	they remain stable.
and critique claims and explanations	functioning of ecosystems in terms of resources and habitat availability and may result in new	
about the natural and designed	ecosystems. (HS.LS2C.a)	Science deals with
world(s). Arguments may also come		constructing
from current scientific or historical	Under most circumstances a natural balance is maintained within an ecosystem.	explanations of how
episodes in science.	Organisms both cooperate and compete in ecosystems.	things change. Science
Evaluate the claims, evidence,	The interrelationships and interdependencies of these organisms may generate complex	deals with constructing
and/or reasoning behind currently	ecosystems that are stable over long periods of time and tend to have cyclic fluctuations	explanations of how
accepted explanations or solutions	around an equilibrium (i.e., the ecosystem is resilient).	things remain stable.
to determine the merits of	Extreme fluctuations, such as from natural disasters, can challenge the functioning of	
arguments.	ecosystems in terms of resources and habitat availability.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	These changes can result in an ecosystem breaking down or the creation of an entirely new	
Evaluate the claims behind	ecosystem.	
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the claims behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted solutions to		
determine the merits of arguments.		

Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood and extreme changes, such as volcanic eruption or sea level rise. Emphasis should be on describing drivers of ecosystem stability and change, not on the organismal mechanisms of responses and interactions.

HS-LS2-7 Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

LC-HS-LS2-7a Describe how people can help protect the Earth's environment and biodiversity (e.g., preserving ecosystems) and how a human activity would threaten Earth's environment and biodiversity (e.g., pollution, damaging habitats, over hunting).

LC-HS-LS2-7b Evaluate or refine a solution to changes in an ecosystem (biodiversity) resulting from a human activity.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
designing solutions: Constructing	Ecosystems with a greater biodiversity tend to have a greater resistance and resilience to	Much of science deals
explanations (science) and designing	change. Moreover, anthropogenic changes (induced by human activity) in the environment—	with constructing
solutions (engineering) in 9-12	including habitat destruction, pollution, introduction of invasive species, overexploitation, and	explanations of how
builds on K-8 experiences and	climate change—can disrupt an ecosystem and threaten the survival of some species.	things change and how
progresses to explanations and	(HS.LS2C.b)	they remain stable.
designs that are supported by		
multiple and independent student-	Biodiversity helps maintain stability in ecosystems.	Science deals with
generated sources of evidence	However, factors caused by humans (e.g., habitat destruction, pollution, introduction of	constructing
consistent with scientific ideas,	invasive species) have negative effects on the environment and biodiversity. Some system	explanations of how
principles, and theories.	changes are irreversible.	things change. Science
 Design, evaluate, and/or refine a 		deals with constructing
solution to a complex real-world	BIODIVERSITY AND HUMANS	explanations of how
problem, based on scientific	Biodiversity is increased by the formation of new species (speciation) and decreased by the	things remain stable.
knowledge, student-generated	loss of species (extinction). Humans depend on the living world for the resources and other	
sources of evidence, prioritized	benefits provided by biodiversity. Human activity is also having adverse impacts on	
criteria, and trade-off	biodiversity through overpopulation, overexploitation, habitat destruction, pollution,	
considerations.	introduction of invasive species, and climate change. Thus, sustaining biodiversity so that	
	ecosystem functioning and productivity are maintained is essential to supporting and	
Design a solution to a complex real-		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
world problem, based on scientific	enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of	
knowledge, student-generated	recreational or inspirational value. (HS.LS4D.a)	
sources of evidence, prioritized		
criteria, and trade-off	Humans depend on the living world for resources.	
considerations.	Thus, protecting the environment and biodiversity helps sustain human life.	
Evaluate a solution to a complex	Ecosystems undergo major changes as a result of such human-related factors as	
real-world problem, based on scientific knowledge, student-	overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change.	
generated sources of evidence, prioritized criteria, and trade-off	Sustainability of human societies and the biodiversity that supports them require responsible management of natural resources.	
considerations.	Changes in the physical, chemical, or biological conditions of an ecosystem can alter the	
Refine a solution to a complex real-	diversity of species in the system.	
world problem, based on scientific knowledge, student-generated sources of evidence, prioritized	Over time, ecosystems change and populations of organisms adapt, move, or become extinct.	
criteria, and trade-off	DEVELOPING POSSIBLE SOLUTIONS	
considerations.	When evaluating solutions it is important to take into account a range of constraints including cost, safety, reliability and aesthetics and to consider social, cultural and environmental impacts. (HS.ETS1B.a)	
	It is important to determine the full impact of the advantages and disadvantages when evaluating a solution.	
	The development of solutions is driven by the following factors: economical, political, cultural, social, safety, and environmental.	

Examples of human activities can include urbanization, building dams, or dissemination of invasive species.

HS-ESS1-1 Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.

LC-HS-ESS1-1a Describe components of a model illustrating that the sun shines because of nuclear fusion reactions which release light and heat energy which make life on Earth possible.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	THE UNIVERSE AND ITS STARS	SCALE, PROPORTION,
Modeling in 9-12 builds on K-8	All stars, such as our sun, are evolving. The star called Sol, our sun, will burn out over a	AND QUANTITY
experiences and progresses to using,	lifespan of approximately 10 billion years. (HS.ESS1A.a)	The significance of a
synthesizing, and developing models	The sun is but one of a vast number of stars in the Milky Way galaxy.	phenomenon is
to predict and show relationships	Stars go through a sequence of developmental stages—they are formed; evolve in size,	dependent on the scale,
among variables between systems	mass, and brightness; and eventually burn out.	proportion, and quantity
and their components in the natural	The sun is a medium-sized star.	at which it occurs.
and designed worlds.	The sun's lifespan is about 10 billion years.	
Develop and/or use multiple types	The sun is about halfway through its predicted life span.	The size and time scales
of models to provide mechanistic		relevant to various
accounts and/or predict	The Big Bang theory is supported by observations of distant galaxies receding from our own,	objects, systems, and
phenomena, and move flexibly	of the measured composition of stars and non-stellar gases, and of the maps of spectra of the	processes determine
between model types based on	primordial radiation (cosmic microwave background) that still fills the universe. (HS.ESS1A.c)	the significance of a
merits and limitations.	The Big Bang theory is a core scientific theory that is supported by a large body of evidence.	phenomena.
	According to this theory, the universe began with a period of extreme and rapid expansion	Specific phenomena
Develop multiple types of models	known as the Big Bang, which occurred about 13.7 billion years ago.	correspond to a specific
to provide mechanistic accounts	It states that the universe began in a hot dense state of energy and matter, and the	scale (e.g., the size of
and move flexibly between model	universe has been expanding ever since.	the nucleus of an atom
types based on merits and	Spectroscopes are used to analyze starlight to reveal information about the composition	to the size of the galaxy
limitations.	and evolution of stars.	and beyond).
Use multiple types of models to	The sun and our Solar System are part of the Milky Way galaxy consisting of billions of other	
provide mechanistic accounts and	stars that appear to be made of the same elements found on Earth.	
move flexibly between model types	Stars' radiation of visible light and other forms of energy can be measured and studied to	
based on merits and limitations.	develop explanations about the formation, age, and composition of the universe.	
Develop multiple types of models		
to predict phenomena and move	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	
flexibly between model types	Nuclear fusion processes in the center of the sun release the energy that ultimately reaches	
based on merits and limitations.	Earth as radiation. (HS.PS3D.c)	
Use multiple types of models to	The sun is a star that gives off radiant energy that drives Earth systems.	
predict phenomena and move	The source of the sun's energy is the fusion of hydrogen atoms into helium.	
	The sun's energy reaches Earth as solar radiation.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
flexibly between model types		
based on merits and limitations.		

Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun's core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun's radiation varies due to sudden solar flares ("space weather"), the 11-year sunspot cycle, and non-cyclic variations over centuries.

Performance Expectation and Louisiana Connectors

HS-ESS1-1 Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.

LC-HS-ESS1-1a Describe components of a model illustrating that the sun shines because of nuclear fusion reactions which release light and heat energy which make life on Earth possible.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	THE UNIVERSE AND ITS STARS	SCALE, PROPORTION,
Modeling in 9-12 builds on K-8	All stars, such as our sun, are evolving. The star called Sol, our sun, will burn out over a	AND QUANTITY
experiences and progresses to using,	lifespan of approximately 10 billion years. (HS.ESS1A.a)	The significance of a
synthesizing, and developing models	The sun is but one of a vast number of stars in the Milky Way galaxy.	phenomenon is
to predict and show relationships	Stars go through a sequence of developmental stages—they are formed; evolve in size,	dependent on the scale,
among variables between systems	mass, and brightness; and eventually burn out.	proportion, and quantity
and their components in the natural	The sun is a medium-sized star.	at which it occurs.
and designed worlds.	The sun's lifespan is about 10 billion years.	
• Develop and/or use multiple types	The sun is about halfway through its predicted life span.	The size and time scales
of models to provide mechanistic		relevant to various
accounts and/or predict	The Big Bang theory is supported by observations of distant galaxies receding from our own,	objects, systems, and
phenomena, and move flexibly	of the measured composition of stars and non-stellar gases, and of the maps of spectra of the	processes determine
between model types based on	primordial radiation (cosmic microwave background) that still fills the universe. (HS.ESS1A.c)	the significance of a
merits and limitations.	The Big Bang theory is a core scientific theory that is supported by a large body of evidence.	phenomena.
	According to this theory, the universe began with a period of extreme and rapid expansion	Specific phenomena
Develop multiple types of models	known as the Big Bang, which occurred about 13.7 billion years ago.	correspond to a specific
to provide mechanistic accounts	It states that the universe began in a hot dense state of energy and matter, and the	scale (e.g., the size of
and move flexibly between model	universe has been expanding ever since.	the nucleus of an atom
types based on merits and	Spectroscopes are used to analyze starlight to reveal information about the composition	to the size of the galaxy
limitations.	and evolution of stars.	and beyond).
Use multiple types of models to	The sun and our Solar System are part of the Milky Way galaxy consisting of billions of other	
provide mechanistic accounts and	stars that appear to be made of the same elements found on Earth.	
move flexibly between model types	Stars' radiation of visible light and other forms of energy can be measured and studied to	
based on merits and limitations.	develop explanations about the formation, age, and composition of the universe.	
Develop multiple types of models		
to predict phenomena and move	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	
flexibly between model types	Nuclear fusion processes in the center of the sun release the energy that ultimately reaches	
based on merits and limitations.	Earth as radiation. (HS.PS3D.c)	
Use multiple types of models to	The sun is a star that gives off radiant energy that drives Earth systems.	
predict phenomena and move	The source of the sun's energy is the fusion of hydrogen atoms into helium.	
flexibly between model types	The sun's energy reaches Earth as solar radiation.	
based on merits and limitations.		

Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun's core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun's radiation varies due to sudden solar flares ("space weather"), the 11-year sunspot cycle, and non-cyclic variations over centuries.

Performance Expectation and Louisiana Connectors

HS-ESS1-3 Communicate scientific ideas about the way stars, over their life cycle, produce elements.

LC-HS-ESS1-3a Communicate by using models that solar activity creates elements through nuclear fusion.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	THE UNIVERSE AND ITS STARS	ENERGY AND MATTER
communicating information:	The study of stars' light spectra and brightness is used to identify compositional elements of	In nuclear processes,
Obtaining, evaluating, and	stars, their movements, and their distances from Earth. (HS.ESS1A.b)	atoms are not
communicating information in 9-12		conserved, but the total
builds on K-8 and progresses to	The composition of stars can be determined by analysis of their spectra.	number of protons plus

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
evaluating the validity and reliability	Stars range greatly in their size and distance from Earth.	neutrons is conserved.
of the claims, methods, and designs.	Stars' light spectra and brightness are used to identify their distances from Earth.	
Communicate scientific and/or	Our knowledge of the history of the Universe is based on electromagnetic energy that has	The total number of
technical information or ideas (e.g.,	traveled vast distances and takes a long period of time to reach us.	nuclear particles are the
about phenomena and/or the		same both before and
process of development and the	Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within	after the nuclear
design and performance of a	stars produces all atomic nuclei lighter than and including iron, and the process releases	process, although the
proposed process or system) in	electromagnetic energy. Heavier elements are produced when certain massive stars achieve a	total number of protons
multiple formats (i.e., orally,	supernova stage and explode. (HS.ESS1A.d)	and the total number of
graphically, textually,		neutrons may be
mathematically).	Most elements are formed as a result of natural astronomical processes, either in the Big	different before and
	Bang itself or in the natural evolution of stars.	after.
Communicate scientific information	Nuclear fusion within stars produces all atomic nuclei lighter than and including iron.	
in multiple formats (i.e., orally,	A supernova is the explosion of a dying giant or supergiant star.	
graphically, textually,	After a supernova, some of the material (e.g., heavier elements) from the star expands into	
mathematically).	space.	
Communicate technical information		
in multiple formats (i.e., orally,	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	
graphically, textually,	Nuclear fusion processes in the center of the sun release the energy that ultimately reaches	
mathematically).	Earth as radiation. (HS.PS3D.c)	
Communicate scientific ideas in		
multiple formats (i.e., orally,	The sun is a star that gives off radiant energy that drives Earth systems.	
graphically, textually,	The source of the sun's energy is the fusion of hydrogen atoms into helium.	
mathematically).	The sun's energy reaches Earth as solar radiation.	

Emphasis is on the way nucleosynthesis, and therefore the different elements created, depends on the mass of a star and the stage of its lifetime.

Performance Expectation and Louisiana Connectors

HS-ESS1-4 Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

LC-HS-ESS1-4a Recognize that objects in the solar system orbit the sun and have an orderly motion (e.g., elliptical paths around the sun).

LC-HS-ESS1-4b Relate Earth's orbital characteristics to other bodies in the solar system.

LC-HS-ESS1-4c Use a mathematical or computational representation to predict the motion of orbiting objects in the solar system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	EARTH AND THE SOLAR SYSTEM	SCALE, PROPORTIONS,
computational thinking:	Kepler's laws describe common features of the motions of orbiting objects, including their	AND QUANTITY
Mathematical and computational	elliptical paths around the sun. Orbits may change due to the gravitational effects from, or	Algebraic thinking is
thinking in 9-12 builds on K-8	collisions with, other objects in the solar system. (HS.ESS1B.a)	used to examine
experiences and progresses to using		scientific data and
algebraic thinking and analysis, a	Kepler discovered that the orbit of each planet is an ellipse.	predict the effect of a
range of linear and nonlinear	Kepler's laws describe the elliptical paths around the sun in which objects in the solar	change in one variable
functions (e.g., trigonometric,	system move.	on another (e.g., linear

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
exponential, and logarithmic) and	Objects' orbits may change due to the gravitational interactions of other objects in the solar	growth vs. exponential
computational tools for statistical	system.	growth).
analysis to analyze, represent, and	Objects' orbits may change due to collisions with other objects in the solar system.	
model data. Simple computational		Examine scientific data
simulations are created and used		to predict the effect of
based on mathematical models of		a change in one
basic assumptions.		variable on another.
• Use mathematical, computational,		Algebraic thinking can
and/or algorithmic representations		be used to explore
of phenomena or design solutions to		complex mathematical
describe and/or support claims		relationships in science
and/or explanations.		(e.g., the difference
		between linear growth
		and exponential
Use mathematical or algorithmic		growth).
forms for scientific modeling of		
phenomena and/or design		
solutions to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena and/or design		
solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena and/or design		
solutions to describe explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena and/or design		
solutions to support explanations.		

Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as other celestial bodies (e.g., graphical representations of orbits).

Performance Expectation and Louisiana Connectors

HS-ESS1-5 Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.

LC-HS-ESS1-5a Explain the relationship between the motion of continental plates and how materials of different ages are arranged on Earth's surface. LC-HS-ESS1-5b Relate/evaluate evidence of past and/or current movements in Earth's crust (plate tectonics) with the ages of crustal rocks.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	THE HISTORY OF PLANET EARTH	PATTERNS
evidence: Engaging in argument	Continental rocks, which can be older than 4 billion years, are generally much older than the	Empirical evidence is
from evidence in 9-12 builds on K-8	rocks of the ocean floor, which are less than 200 million years old. (HS.ESS1C.b)	needed to identify
experiences and progresses to using	According to theory of plate tectonics, evidence of the past and current movements of	patterns.
appropriate and sufficient evidence	continental and oceanic crust can be used to explain the ages of crustal rocks.	
and scientific reasoning to defend	Sea floor spreading adds new crust to the ocean floor.	Evidence is required
and critique claims and explanations	Earth's internal and surface processes operate at different spatial and temporal scales to	when identifying a

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
about the natural and designed	form continental and ocean-floor features.	pattern in an observed
world(s). Arguments may also come	Continental rocks can be older than 4 billion years.	phenomenon.
from current scientific or historical	Rocks of the ocean floor are less than 200 million years old.	Evidence is required to
episodes in science.		explain the pattern in a
 Evaluate the claims, evidence, 	Although active geologic processes, such as plate tectonics and erosion, have destroyed or	system under study.
and/or reasoning behind currently	altered most of the very early rock record on Earth, other objects in the solar system, such as	Evidence is required to
accepted explanations or solutions	lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying	support a claim about
to determine the merits of	these objects can provide information about Earth's formation and early history. (HS.ESS1C.c)	the pattern in a system
arguments.	Active geologic processes have destroyed or altered most of the very early rock record on Earth.	under study.
Evaluate the claims behind	Some objects in the solar system have changed little over billions of years.	
currently accepted explanations to	Scientists study objects in the solar system (i.e., lunar rocks, asteroids, meteorites) to search	
determine the merits of arguments.	for clues about Earth's history.	
Evaluate the claims behind	Studying these objects can help scientists deduce the solar system's age and history,	
currently accepted solutions to	including the formation of planet Earth.	
determine the merits of arguments.		
Evaluate the evidence behind	PLATE TECTONICS AND LARGE-SCALE SYSTEM INTERACTIONS	
currently accepted explanations to	Plate tectonics is the unifying theory that explains the past and current movements of the	
determine the merits of arguments.	rocks at Earth's surface and provides a framework for understanding its geologic history.	
Evaluate the evidence behind	(HS.ESS2B.a)	
currently accepted solutions to	Plate tectonics is the theory that explains the past and current movement of Earth's plates.	
determine the merits of arguments.	Plate tectonics also provides a framework for understanding Earth's geologic history.	
Evaluate the reasoning behind		
currently accepted explanations to	NUCLEAR PROCESSES	
determine the merits of arguments.	Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear	
Evaluate the reasoning behind	lifetimes allow radiometric dating to be used to determine the ages of rocks and other	
currently accepted solutions to	materials. (HS.PS1C.b)	
determine the merits of arguments.	Radioactive elements found in rocks decay at a constant rate.	
	The half-life of a radioactive element is the time it takes for half of the radioactive atoms to	
	decay.	
	Scientists compare the amount of a radioactive element in a rock with the amount of stable	
	element into which the radioactive element decays.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Thus, scientists use radioactive dating to determine the absolute ages of rocks and other materials.	

Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages of oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient continental center (a result of past plate interactions).

Performance Expectation and Louisiana Connectors

HS-ESS1-6 Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.

LC-HS-ESS1-6a Identify ancient Earth materials, lunar rocks, asteroids, and meteorites as sources of evidence scientists use to understand Earth's early history.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	THE HISTORY OF PLANET EARTH	STABILITY AND CHANGE
designing solutions: Constructing	Although active geologic processes, such as plate tectonics and erosion, have destroyed or	Much of science deals
explanations (science) and designing	altered most of the very early rock record on Earth, other objects in the solar system, such as	with constructing
solutions (engineering) in 9-12	lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying	explanations of how

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
builds on K-8 experiences and	these objects can provide information about Earth's formation and early history. (HS.ESS1C.c)	things change and how
progresses to explanations and		they remain stable.
designs that are supported by	Active geologic processes have destroyed or altered most of the very early rock record on	
multiple and independent student-	Earth.	Science deals with
generated sources of evidence	Some objects in the solar system have changed little over billions of years.	constructing
consistent with scientific ideas, principles, and theories.	Scientists study objects in the solar system (i.e., lunar rocks, asteroids, meteorites) to search for clues about Earth's history.	explanations of how things change.
 Apply scientific reasoning, theory, 	Studying these objects can help scientists deduce the solar system's age and history,	Science deals with
and/or models to link evidence to	including the formation of planet Earth.	constructing
the claims to assess the extent to	metading the formation of planet Earth.	explanations of how
which the reasoning and data	NUCLEAR PROCESSES	things remain stable.
support the explanation or	Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear	timigo i cinami stabici
conclusion.	lifetimes allow radiometric dating to be used to determine the ages of rocks and other	
6011616316111	materials. (HS.PS1C.b)	
Apply scientific reasoning to link		
evidence to the claims to assess the	Radioactive elements found in rocks decay at a constant rate.	
extent to which the reasoning and	The half-life of a radioactive element is the time it takes for half of the radioactive atoms to	
data support the explanation.	decay.	
Apply scientific theory to link	Scientists compare the amount of a radioactive element in a rock with the amount of stable	
evidence to the claims to assess the	element into which the radioactive element decays.	
extent to which the reasoning and	Thus, scientists use radioactive dating to determine the absolute ages of rocks and other	
data support the explanation.	materials.	
Apply scientific modeling to link		
evidence to the claims to assess the		
extent to which the reasoning and		
data support the explanation.		
Apply scientific reasoning to link		
evidence to the claims to assess the		
extent to which the reasoning and		
data support the conclusion.		
Apply scientific theory to link		
evidence to the claims to assess the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
extent to which the reasoning and		
data support the conclusion.		
Apply scientific modeling to link		
evidence to the claims to assess the		
extent to which the reasoning and		
data support the conclusion.		

Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples include the absolute age of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth's oldest materials), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.

Performance Expectation and Louisiana Connectors

HS-ESS2-1 Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

LC-HS-ESS2-1a Use a model of Earth to identify that the motion of the mantle and its plates occurs primarily through thermal convection, which is primarily driven by radioactive decay within Earth's interior.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	EARTH MATERIALS AND SYSTEMS	STABILITY AND CHANGE
Modeling in 9-12 builds on K-8	Earth's systems, being dynamic and interacting, cause feedback effects that can increase or	Change and rates of
experiences and progresses to using,	decrease the original changes. (HS.ESS2A.a)	change can be

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
synthesizing, and developing models		quantified and modeled
to predict and show relationships	Earth's systems are dynamic and interacting.	over very short or very
among variables between systems	Earth has interconnected spheres: lithosphere or geosphere, hydrosphere, biosphere,	long periods of time.
and their components in the natural	atmosphere, and cryosphere.	Some system changes
and designed worlds.	Changes in one system can cause changes to other systems.	are irreversible.
 Develop, revise, and/or use a 	Rates of change of Earth's internal and surface processes occur over very short and very	
model based on evidence to	long periods of time.	Change and rates of
illustrate and/or predict the	Many complex linkages and feedbacks among erosional and climatic processes in addition	change can be
relationships between systems or	to tectonic ones change Earth's systems.	quantified over very
between components of a system.	Such complexities include feedback and stabilizing or destabilizing links between	short or very long
	component processes.	periods of time.
Develop or use a model to identify	A change in one sphere can cause changes to other spheres, resulting in positive or negative	Change and rates of
and describe the components of a	feedback loops.	change can be modeled
system.		over very short or very
Develop or use a model to identify	PLATE TECTONICS AND LARGE-SCALE SYSTEM INTERACTIONS	long periods of time.
and describe the relationships	Plate tectonics is the unifying theory that explains the past and current movements of rocks at	Some system changes
between the components of a system.	Earth's surface and provides a framework for understanding its geologic history. (HS.ESS2B.a)	are irreversible.
Develop or use a model to predict	Plate tectonics is the theory that explains the past and current movement of Earth's plates.	
relationships between systems or	Plate tectonics is the theory that explains the past and current movement of Earth's plates. Plate tectonics also provides a framework for understanding Earth's geologic history.	
within a system.	Plate tectorics also provides a framework for understanding Earth's geologic history.	
Identify that models can help	Plate movements are responsible for most continental and ocean-floor features and for the	
illustrate relationships between systems or within a system.	distribution of most rocks and minerals within Earth's crust. (HS.ESS2B.b)	
	Plate movements are responsible for both continental and ocean-floor features.	
	Plate movements are responsible to the distribution of most rocks and minerals on Earth.	
	Maps showing the distribution of minerals can be used to draw inferences regarding how plates have moved over time.	

Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples include the absolute age of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth's oldest materials), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.

Performance Expectation and Louisiana Connectors

HS-ESS2-2 Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth's systems. LC-HS-ESS2-2a Identify relationships, using a model, of how the Earth's surface is a complex and dynamic set of interconnected systems (i.e., geosphere, hydrosphere, atmosphere, and biosphere).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EARTH MATERIALS AND SYSTEMS	STABILITY AND CHANGE
Analyzing data in 9-12 builds on K-8	Earth's systems, being dynamic and interacting, include feedback effects that can increase or	Feedback (negative or
experiences and progresses to	decrease the original changes. (HS.ESS2A.a)	positive) can stabilize or
introducing more detailed statistical		destabilize a system.
analysis, the comparison of data	Earth's systems are dynamic and interacting.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
sets for consistency, and the use of	Earth has interconnected spheres: lithosphere or geosphere, hydrosphere, biosphere,	Stability denotes a
models to generate and analyze	atmosphere, and cryosphere.	condition in which a
data	Changes in one system can cause changes to other systems.	system is in balance.
 Analyze data using tools, 	Rates of change of Earth's internal and surface processes occur over very short and very	A feedback loop is any
technologies, and/or models (e.g.,	long periods of time.	mechanism in which a
computational, mathematical) in	Many complex linkages and feedbacks among erosional and climatic processes in addition	condition triggers some
order to make valid and reliable	to tectonic ones change Earth's systems.	action that causes a
scientific claims or determine an	Such complexities include feedback, stabilizing or destabilizing links between component	change in that same
optimal design solution.	processes.	condition.
	A change in one sphere can cause changes to other spheres, resulting in positive or negative	The mechanisms of
Analyze data using tools in order to	feedback loops.	external controls and
make valid and reliable scientific		internal feedback loops
claims.	WEATHER AND CLIMATE	are important elements
Analyze data using tools in order to	The foundation for Earth's global climate systems is the electromagnetic radiation from the	for a stable system.
determine an optimal design	sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere,	A change in one part of
solution.	hydrosphere, and land systems, and this energy's re-radiation into space. (HS.ESS2D.a)	a system can cause
Analyze data using technology in		changes to other parts
order to make valid and reliable	Sunlight is a portion of the electromagnetic radiation given off by the sun.	of the system, resulting
scientific claims.	Energy from the sun travels to Earth and heats Earth's surface.	in positive or negative
Analyze data using technology in	Some of this energy is radiated back into Earth's atmosphere.	feedback loops.
order to determine an optimal	The sun's energy drives Earth's climate systems.	The changes (negative
design solution.	Uneven heating of Earth's components (i.e., water, land, air) produce local and global	or positive) can stabilize
Analyze data using models in order	atmospheric and oceanic movement.	or destabilize a system.
to make valid and reliable scientific	Heat energy stored in the oceans and transferred by currents influences climate.	
claims.		
Analyze data using models in order		
to determine an optimal design		
solution.		

Examples could include climate feedbacks such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice which reduces the amount of sunlight reflected from Earth's surface increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how damned rivers increase ground water recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.

Performance Expectation and Louisiana Connectors

HS-ESS2-3 Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.

LC-HS-ESS2-3a Use a model of Earth to identify that the motion of the mantle and its plates occurs primarily through thermal convection, which is primarily driven by radioactive decay within Earth's interior.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	EARTH MATERIALS AND SYSTEMS	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth's	Energy drives the cycling
experiences and progresses to using,	surface and its magnetic field, and an understanding of physical and chemical processes lead	of matter within and

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
synthesizing, and developing models	to a model of Earth with a hot but solid inner core, a liquid outer core, a viscous mantle and	between systems.
to predict and show relationships	solid crust. (HS.ESS2A.b)	
among variables between systems		In many systems there
and their components in the natural	Seismic waves are vibrations that travel through Earth carrying the energy released during	also are cycles of
and designed worlds.	an earthquake.	various types.
Develop a model based on	A seismograph records the ground movements caused by seismic waves as they move	The most readily
evidence to illustrate the	through the Earth.	observable cycling may
relationships between systems or	Scientists monitor seismic activity to better understand Earth's interior and to determine	be of matter.
components of a system.	earthquake risk.	Any such cycle of
	Earth's interior is a hot, but solid, inner core and a liquid outer core surrounded by a solid	matter also involves
Develop a model based on	mantle and crust.	associated energy
evidence to illustrate the	Earth's geosphere is composed of layers of rocks which have separated due to density and	transfers at each stage.
relationships between systems.	temperature differences and classified chemically into a crust (which includes continental	To fully understand the
Develop a model based on	and oceanic rock), a hot, convecting mantle, and a dense metallic core.	cycling of matter, how
evidence to illustrate the		matter moves between
components of a system.	Motions of the mantle and its plates occur primarily through thermal convection, which	each part of the system,
	involves the cycling of matter due to the outward flow of energy from Earth's interior and	one must recognize the
	gravitational movement of denser materials toward the interior. (HS.ESS2A.c)	energy transfer
		mechanisms that are
	Convection is the transfer of heat by movements of a heated fluid.	critical for that motion.
	The flow of heat and matter from Earth's core and the mantle causes crustal plates to move.	
	Heat from Earth's mantle and core causes convection currents to form in the athenosphere.	
	Hot, therefore less dense, columns of mantle material rise through the athenosphere.	
	At the top of the athenosphere, the hot material spreads out, and the cooler, therefore	
	more dense, material sinks back into the athenosphere.	
	PLATE TECTONICS AND LARGE-SCALE SYSTEM INTERACTIONS	
	The radioactive decay of unstable isotopes continually generates new energy within Earth's	
	crust and mantle, providing the primary source of the heat that drives mantle convection.	
	Plate tectonics can be viewed as the surface expression of mantle convection. (HS.ESS2B.c)	
	The transfer of energy through empty space is called radiation.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Energy released by radioactive decay in the Earth's crust provides energy that drives the	
	flow of matter in the mantle.	
	The convection currents in the athenosphere cause the movement of Earth's plates.	
	Earth has radial layers determined by density, together with the cycling of matter by	
	thermal convection, results in plate tectonics.	
	WAVE PROPERTIES	
	Geologists use seismic waves and their reflections at interfaces between layers to probe	
	structures deep in the planet. (HS.PS4A.c)	
	Scientists study how seismic waves travel through Earth to understand how the planet is	
	put together (i.e., Earth is made up of several layers).	
	Seismic data is used to determine the age of Earth's crust.	
	The interpretation of seismic data is used to model the interior of the Earth.	

Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of the Earth's three-dimensional structure obtained from seismic wave data, records of the rate of change of Earth's magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth's layers from high pressure laboratory experiments.

Performance Expectation and Louisiana Connectors

HS-ESS2-4 Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems result in changes in atmosphere and climate.

LC-HS-ESS2-4a Identify different causes of climate change and results of those changes with respect to the Earth's surface temperatures, precipitation patterns or sea levels over a wide range of temporal and spatial scales using a model.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EARTH AND THE SOLAR SYSTEM	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Cyclical changes in the shape of Earth's orbit around the sun, together with changes in the tilt	Empirical evidence is
experiences and progresses to	of the planet's axis of rotation, both occurring over hundreds of thousands of years, have	required to differentiate
introducing more detailed statistical	altered the intensity and distribution of sunlight falling on Earth. These phenomena cause a	between cause and
analysis, the comparison of data	cycle of ice ages and other gradual climate changes. (HS.ESS1B.b)	correlation and make
sets for consistency, and the use of		claims about specific
models to generate and analyze	Gradual changes in the shape of Earth's orbit around the sun contributes to phenomena	causes and effects.
data.	causing ice ages and other gradual climate changes.	
 Analyze data using tools, 	Earth's global temperatures can warm up or cool down if the amount of sunlight that enters	Evidence is required
technologies, and/or models (e.g.,	the atmosphere is significantly altered.	when attributing an
computational, mathematical) in	Cyclic variations of Earth's orbit around the sun impact the amount of sunlight that reaches	observed phenomenon
order to make valid and reliable	Earth's surface.	to a specific cause.
scientific claims or determine an	Gradual changes to the tilt of Earth's axis relative to its orbit around the sun have produced	Evidence is required to
optimal design solution.	different weather patterns.	explain the causal
		mechanisms in a system
Analyze data using tools in order to	EARTH MATERIALS AND SYSTEMS	under study.
make valid and reliable scientific	The geological record shows that changes to global and regional climate can be caused by	Evidence is required to
claims.	interactions among changes in the sun's energy output or Earth's orbit, tectonic events,	support a claim about
Analyze data using tools in order to	hydrosphere circulation, volcanic activity, glaciers, vegetation, and human activities. These	the causal mechanisms
determine an optimal design	changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to	in a system under
solution.	intermediate (ice ages) to very long-term tectonic cycles. (HS.ESS2A.d)	study.
Analyze data using technology in		
order to make valid and reliable	All Earth processes are the result of energy flowing and matter cycling within and among	
scientific claims.	Earth's systems.	
Analyze data using technology in	Changes to climate occur over a wide range of temporal and spatial scales.	
order to determine an optimal	The geological record (ice cores, sediment deposits, fossil evidence, and paleovegetation	
design solution.	restorations) shows that changes to global and regional climate can be caused by several	
Analyze data using models in order	factors (Earth's orbit, tectonic events, volcanic glaciers, vegetation, etc.).	
to make valid and reliable scientific	Changes to the input, output, storages, or redistribution of energy on Earth can occur over a	
claims.	short or extended time frame and can cause extreme weather conditions.	
Analyze data using models in order		
	WEATHER AND CLIMATE	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
to determine an optimal design	The foundation for Earth's global climate systems is the electromagnetic radiation from the	
solution.	sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere,	
	hydrosphere and land systems, and this energy's re-radiation into space. (HS.ESS2D.a)	
	Sunlight is a portion of the electromagnetic radiation given off by the sun.	
	Energy from the sun travels to Earth and heats Earth's surface.	
	Some of this energy is radiated back into Earth's atmosphere.	
	The sun's energy drives Earth's climate systems.	
	Uneven heating of Earth's components (i.e., water, land, air) produce local and global	
	atmospheric and oceanic movement.	
	Heat energy stored in the oceans and transferred by currents influence climate.	
	Gradual atmospheric changes were due to plants and other organisms that captured carbon	
	dioxide and released oxygen. (HS.ESS2D.b)	
	Plants contribute to the make-up of Earth's atmosphere by absorbing carbon dioxide and	
	releasing oxygen.	
	Carbon continuously cycles from one sphere to another.	
	In the past, the relative amount of carbon that cycled through the hydrosphere,	
	atmosphere, lithosphere or geosphere, and biosphere was partially due to the activity of plants and other organisms.	
	Changes in the atmosphere due to human activity have increased carbon dioxide	
	concentrations and thus affect climate. (HS.ESS2D.c)	
	Human activities that add carbon dioxide to the atmosphere may be warming Earth's	
	atmosphere.	
	A large amount of carbon dioxide has been released into Earth's atmosphere by human-	
	related fossil fuel combustion.	
	An increase in atmospheric carbon can increase the amount of heat energy stored in the	
	system.	

Changes differ by timescale, from sudden (large volcanic eruption, hydrosphere circulation) to intermediate (hydrosphere circulation, solar output, human activity) and long-term (Earth's orbit and the orientation of its axis and changes in atmospheric composition). Examples of human activities could include fossil fuel combustion, cement production, or agricultural activity and natural processes such as changes in incoming solar radiation or volcanic activity. Examples of data can include tables, graphs, maps of global and regional temperatures, and atmospheric levels of gases.

Performance Expectation and Louisiana Connectors

HS-ESS2-5 Plan and conduct an investigation on the properties of water and its effects on Earth materials and surface processes.

LC-HS-ESS2-5a Identify a connection between the properties of water and its effects on Earth materials.

LC-HS-ESS2-5b Investigate the effects of water on Earth materials and/or surface processes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	THE ROLE OF WATER IN EARTH'S SURFACE PROCESSES	STRUCTURE AND
investigations: Planning and	The abundance of liquid water on Earth's surface and its unique combination of physical and	FUNCTION
carrying out investigations to	chemical properties are central to the planet's dynamics. These properties include water's	The functions and
answer questions (science) or test	exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight,	properties of natural

ards	D
nce	0

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
solutions (engineering) to problems	expand upon freezing, dissolve and transport materials, and lower the viscosities and melting	and designed objects
in 9-12 builds on K-8 experiences	points of rocks. (HS.ESS2C.a)	and systems can be
and progresses to include		inferred from their
investigations that provide evidence	Water has many unique properties (e.g., capacity to absorb, store, and release large	overall structure, the
for and test conceptual,	amounts of energy; to expand upon freezing; to dissolve and transport many materials) that	way their components
mathematical, physical, and	play a role in how it affects Earth systems (e.g., ocean thermal capacity contributes to	are shaped and used,
empirical models.	moderating temperature variations, ice expansion contributes to rock erosion).	and the molecular
 Plan an investigation (science) or 	Water exhibits a polar nature due to its molecular structure.	substructures of its
test a design (engineering)	Patterns of temperature, the movement of air, the movement and availability of water at	various materials.
individually and collaboratively to	Earth's surface can be related to the effect of the properties of water on energy transfer.	
produce data to serve as the basis	Mechanical effects of water (e.g., stream transportation and deposition, erosion using	There are relationships
for evidence as part of building and	variations in soil moisture content, and expansion of water as it freezes) on Earth's	between structure and
revising models, supporting	materials can be used to infer the effect of water on Earth's surface properties.	function of natural and
explanations for phenomena, or	Chemical effects of water (e.g., properties of solubility, the reaction of water on iron) on	designed objects.
testing solutions to problems.	Earth materials can be used to infer the effect of water on Earth's surface processes.	There are relationships
Consider possible confounding		between structure and
variables or effects and evaluate the		function of systems.
investigation's design to ensure		Relationships between
variables are controlled.		structure and function
		can be inferred from
Plan an investigation (science)		their overall structure.
individually and collaboratively to		Relationships between
produce data to serve as the basis		structure and function
for evidence as part of building and		can be inferred from
revising models. Consider possible		the way their
confounding variables or effects		components are
and evaluate the investigation's		shaped.
design to ensure variables are		Relationships between
controlled.		structure and function
Test a design (engineering)		can be inferred from
individually and collaboratively to		the molecular
produce data to serve as the basis		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concep
for evidence as part of building and		substructures of its
revising models. Consider possible		various materials.
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		
controlled.		
Plan an investigation (science)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for supporting		
explanations for phenomena.		
Consider possible confounding		
variables or effects and evaluate		
the investigation's design to ensure		
variables are controlled.		
Test a design (engineering)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for supporting		
explanations for phenomena.		
Consider possible confounding		
variables or effects and evaluate		
the investigation's design to ensure		
variables are controlled.		
Plan an investigation (science)		
ndividually and collaboratively to		
produce data to serve as the basis		
for evidence for testing solutions to		
problems. Consider possible		
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
controlled.		
Test a design (engineering)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for testing solutions to		
problems. Consider possible		
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		
controlled.		

Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).

Performance Expectation and Louisiana Connectors

HS-ESS2-6 Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

LC-HS-ESS2-6a Use a model of photosynthesis to identify that carbon is exchanged between living and nonliving systems.

LC-HS-ESS2-6b Use a model of cellular respiration to identify that carbon is exchanged between living and nonliving systems.

LC-HS-ESS2-6c Develop and/or use a quantitative model to identify relative amount of and/or the rate at which carbon is transferred among hydrosphere, atmosphere, geosphere, and biosphere.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	WEATHER AND CLIMATE	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Gradual atmospheric changes were due to plants and other organisms that captured carbon	The total amount of
experiences and progresses to using,	dioxide and released oxygen. (HS.ESS2D.b)	energy and matter in
synthesizing, and developing models		closed systems is
to predict and show relationships	Plants contribute to the make-up of Earth's atmosphere by absorbing carbon dioxide and	conserved.
among variables between systems	releasing oxygen.	M/han matariala
and their components in the natural	Carbon continuously cycles from one sphere to another.	When materials
and designed worlds.	In the past, the relative amount of carbon that cycled through the hydrosphere,	interact within a closed
Develop a model based on	atmosphere, lithosphere or geosphere, and biosphere was partially due to the activity of	system, the total mass
evidence to illustrate the	plants and other organisms.	of the system remains
relationships between systems or		the same.
between components of a system.	Changes in the atmosphere due to human activity have increased carbon dioxide	Energy may change
	concentrations and thus affect climate. (HS.ESS2D.c)	forms, but the total
Develop a model based on		amount of energy
evidence to illustrate the	Human activities that add carbon dioxide to the atmosphere may be warming Earth's	cannot change in
relationships between systems.	atmosphere.	physical systems.
Develop a model based on	A large amount of carbon dioxide has been released into Earth's atmosphere by human-	
evidence to illustrate the	related fossil fuel combustion.	
components of a system.	An increase in atmospheric carbon can increase the amount of heat energy stored in the	
	system.	

Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.

Performance Expectation and Louisiana Connectors

HS-ESS2-7 Construct an argument based on evidence about the simultaneous coevolution of Earth systems and life on Earth.

LC-HS-ESS2-7a Identify examples of coevolution of Earth's systems and the evolution of life on Earth.

LC-HS-ESS2-7b Identify evidence (e.g., causal links and/or feedback mechanisms between changes in the biosphere and changes in Earth's other systems) in an argument that there is simultaneous coevolution of Earth's systems and life on Earth.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	WEATHER AND CLIMATE	STABILITY AND CHANGE
evidence: Engaging in argument	Gradual atmospheric changes were due to plants and other organisms that captured carbon	Much of science deals
from evidence in 9-12 builds on K-8	dioxide and released oxygen. (HS.ESS2D.b)	with constructing
experiences and progresses to using		explanations of how
appropriate and sufficient evidence	Plants contribute to the make-up of Earth's atmosphere by absorbing carbon dioxide and	things change and how
and scientific reasoning to defend	releasing oxygen.	they remain stable.
and critique claims and explanations	Carbon continuously cycles from one sphere to another.	
about the natural and designed	In the past, the relative amount of carbon that cycled through the hydrosphere,	Science deals with
world(s). Arguments may also come	atmosphere, lithosphere or geosphere, and biosphere was partially due to the activity of	constructing
from current scientific or historical	plants and other organisms.	explanations of how
episodes in science.		things change.
 Construct an oral and written 	BIOGEOLOGY	Science deals with
argument or counterarguments	The many dynamic and delicate feedbacks between the biosphere and other Earth systems	constructing
based on data and evidence.	cause a continual co-evolution of Earth's surface and the life that exists on it. (HS.ESS2E.a)	explanations of how
		things remain stable.
Construct an oral argument based	Feedback (negative or positive) can stabilize or destabilize a system.	
on data and evidence.	The feedbacks between life on Earth and the Earth's systems cause life on Earth to evolve	
Construct a written argument	and the surface of the Earth to undergo changes at the same time.	
based on data and evidence.	Examples of feedback include how an increase in greenhouse gases causes a rise in global	
Construct an oral counterargument	temperatures that melts glacial ice, thus reducing the amount of sunlight reflected from	
based on data and evidence.	Earth's surface, which in turn increases surface temperatures and further reduces the	
Construct a written	amount of ice.	
counterargument based on data		
and evidence.		

Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth's other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth's surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.

Performance Expectation and Louisiana Connectors

HS-ESS3-1 Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.

LC-HS-ESS3-1a Explain the relationship between human activity (e.g., population size, where humans live, types of crops grown) and changes in the amounts of natural resources using evidence.

LC-HS-ESS3-1b Explain the relationship between human activity (e.g., population size, where humans live, types of crops grown) and changes in the occurrence of natural hazards using evidence.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL RESOURCES	CAUSE AND EFFECT
designing solutions: Constructing	Resource availability has guided the development of human society. (HS.ESS3A.a)	Empirical evidence is
explanations (science) and designing		required to differentiate
solutions (engineering) in 9-12	The availability of natural resources has influenced where humans have populated regions	between cause and
builds on K-8 experiences and	of Earth.	correlation and make
progresses to explanations and	Environmental factors have affected human populations over the course of history.	claims about specific
designs that are supported by	Resource availability has driven global development of societies, sizes of human	causes and effects.
multiple and independent student-	populations, and human migrations.	
generated sources of evidence	Evidence (e.g., from text or other investigations) show correlations between human	Evidence is required
consistent with scientific ideas,	population distribution and regional availability of resources such as fresh water, fertile	when attributing an
principles, and theories.	soils, and fossils fuels.	observed phenomenon
Construct an explanation based on		to a specific cause.
valid and reliable evidence obtained	NATURAL HAZARDS	Evidence is required to
from a variety of sources (including	Natural hazards and other geologic events have shaped the course of human history; they	explain the causal
students' own investigations,	have significantly altered the sizes of human populations and have driven human migrations.	mechanisms in a system
models, theories, simulations, peer	(HS.ESS3B.a)	under study.
review) and the assumption that		Evidence is required to
theories and laws that describe the	Natural hazards, such as earthquakes, tsunamis, volcanic eruptions, severe weather, floods,	support a claim about
natural world operate today as they	and coastal erosion, have historically affected the sizes and distributions of human	the causal mechanisms
did in the past and will continue to	populations.	in a system under
do so in the future.	Environmental factors have affected human populations over the course of history.	study.
	Natural disasters and other geologic events have driven global development of societies,	
Construct an explanation based on	sizes of human populations, and human migrations.	
valid and reliable evidence from a	Historical accounts of natural disasters (e.g., Krakatoa eruption, American Dust Bowl,	
variety of sources.	Superstorm Sandy, and Hurricane Katrina) resulting human suffering and loss of life could	
Construct an explanation based on	provide empirical evidence of past impacts on human population size and distribution.	
valid and reliable evidence from		
the assumption that theories and		
laws that describe the natural		
world operate today as they did in		
the past and will continue to do so		
in the future.		

Disciplinary Core Idea	Crosscutting Concept
	Disciplinary Core Idea

Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Natural hazards and other geologic events exhibit some non-random patterns of occurrence. Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.

Performance Expectation and Louisiana Connectors

HS-ESS3-2 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. LC-HS-ESS3-2a Identify a solution that demonstrates the most preferred cost-benefit ratios for developing, managing, and utilizing energy and mineral resources (i.e., conservation, recycling, and reuse of resources).

LC-HS-ESS3-2b Compare design solutions for developing, managing, and/or utilizing energy or mineral resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL RESOURCES	SYSTEMS AND SYSTEM
designing solutions: Constructing	All forms of energy production and other resource extraction have associated economic,	MODELS
explanations (science) and designing	social, environmental, and geopolitical costs and risks as well as benefits. New technologies	Systems can be
solutions (engineering) in 9-12	and social regulations can change the balance of these factors. (HS.ESS3A.b)	designed to do specific
builds on K-8 experiences and		tasks.
progresses to explanations and	Anything in the environment that is naturally occurring and used by people is a natural	
designs that are supported by	resource.	Systems can be
multiple and independent student-	Demand for energy by society leads to continuous exploration in order to expand supplies	designed to explain
generated sources of evidence	of fossil fuels.	phenomena (scientific).
consistent with scientific ideas,	The increase in energy demand and the new technologies being developed to meet these	Systems can be
principles, and theories.	needs and improve the efficiencies of energy systems have social and environmental	designed to refine
 Design, evaluate, and/or refine a 	consequences.	solutions (engineering).
solution to a complex real-world	New technologies of energy production are being developed. For example, the technique of	Systems can be
problem, based on scientific	using hydraulic fracturing to extract natural gas from shale deposits is used to acquire	designed for
knowledge, student-generated	energy from natural resources versus other traditional means.	understanding and
sources of evidence, prioritized	New technologies could have deep impacts on society and the environment, including some	testing ideas that are
criteria, and tradeoff considerations.	that were not anticipated.	applicable throughout
	New technologies are being developed to increase the use of alternate energy sources.	science and
Design a solution to a complex real-		engineering.
world problem, based on scientific	DESIGNING SOLUTIONS TO ENGINEERING PROBLEMS	
knowledge, student-generated	When evaluating solutions, it is important to take into account a range of constraints,	
sources of evidence, prioritized	including cost, safety, reliability, and aesthetics, and to consider social, cultural, and	
criteria, and tradeoff	environmental impacts. (HS.ETS1B.a)	
considerations.		
Evaluate a solution to a complex	It is important to determine the full impact of the advantages and disadvantages when	
real-world problem, based on	evaluating a solution.	
scientific knowledge, student-	New technologies offer solutions based on cost benefit ratios, scientific ideas and principles,	
generated sources of evidence,	empirical evidence, and logical arguments regarding relevant factors (e.g., economic,	
prioritized criteria, and tradeoff considerations.	societal, environmental, and ethical considerations).	
Refine a solution to a complex real-		
world problem, based on scientific		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.		

Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural, soil use, forestry, and mining (coal, tar sands, and oil shales), and pumping (ground water, petroleum, and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.

Performance Expectation and Louisiana Connectors

HS-ESS3-3 Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

LC-HS-ESS3-3a Use numerical data to determine the effects of a conservation strategy to manage natural resources and to sustain human society and plant and animal life.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	HUMAN IMPACTS ON EARTH SYSTEMS	STABILITY AND CHANGE
computational thinking:	The sustainability of human societies and the biodiversity that supports them requires	Change and rates of
Mathematical and computational	responsible management of natural resources. (HS.ESS3C.a)	change can be
thinking in 9-12 builds on K-8		quantified and modeled
experiences and progresses to using	Responsible use of energy requires consideration of energy availability, efficiency of its use,	over very short or very
algebraic thinking and analysis, a	the environmental impact, and possible alternate sources.	long periods of time.
range of linear and nonlinear	Poor management of natural resources can have negative impacts on human populations.	Some system changes
functions (e.g., trigonometric,		are irreversible.
exponential and logarithmic) and		
computational tools for statistical		Change and rates of
analysis to analyze, represent, and		change can be
model data. Simple computational		quantified over very
simulations are created and used		short or very long
based on mathematical models of		periods of time.
basic assumptions.		Change and rates of
Create a computational model or		change can be modeled
simulation of a phenomenon,		over very short or very
designed device, process, or system.		long periods of time.
		Some system changes
Create/use a computational model		are irreversible.
of a phenomenon.		
Revise a computational model of a		
phenomenon.		
Create/use a simulation of a		
phenomenon.		
Revise a simulation of a		
phenomenon.		
Create/use a computational model		
of a process.		
Revise a computational model of a		
process.		
Create/use a simulation of a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
process.		
Revise a simulation of a process.		
Create/use a computational model		
of a system.		
Revise a computational model of a		
system.		
Create/use a simulation of a		
system.		
Revise a simulation of a system.		

Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.

Performance Expectation and Louisiana Connectors

HS-ESS3-4 Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.

LC-HS-ESS3-4a Connect a technological solution (e.g., wet scrubber; baghouse) to its outcome (e.g., clean air) and its outcome to the human activity impact that it is reducing (e.g., air pollution).

Science and Engineering Practice

Constructing explanations and

progresses to explanations and

designs that are supported by multiple and independent student-

generated sources of evidence consistent with scientific ideas.

• Design or refine a solution to a

on scientific knowledge, student generated sources of evidence,

prioritized criteria, and tradeoff

complex real-world problem, based

Design a solution to a complex real-

world problem, based on scientific

knowledge, student-generated

sources of evidence, prioritized

Evaluate a solution to a complex

real-world problem, based on

scientific knowledge, studentgenerated sources of evidence,

prioritized criteria, and tradeoff

Refine a solution to a complex realworld problem, based on scientific

criteria, and tradeoff

considerations.

considerations.

principles, and theories.

considerations.

designing solutions: Constructing

explanations (science) and designing solutions (engineering) in 9-12 builds on K-8 experiences and

LOUISIANA CONNECTORS Compo	onent Cards Science
Disciplinary Core Idea	Crosscutting Concept
HUMAN IMPACTS ON EARTH SYSTEMS	STABILITY AND CHANGE
Scientists and engineers can make major contributions by developing technologies that	Feedback (negative or
produce less pollution and waste and that preclude ecosystem degradation. (HS.ESS3C.b)	positive) can stabilize or
	destabilize a system.
Scientists and engineers can develop technological solutions to reduce human impacts on	,
natural systems.	Stability denotes a
Societal expectations for a sustainable environment will require new, cleaner technologies	condition in which a
for the production and use of energy.	system is in balance.
	A feedback loop is any
DESIGNING SOLUTIONS TO ENGINEERING PROBLEMS	mechanism in which a
When evaluating solutions, it is important to take into account a range of constraints,	condition triggers some
including cost, safety, reliability, and aesthetics, and to consider social, cultural, and	action that causes a
environmental impacts. (HS.ETS1B.a)	change in that same
	condition.
It is important to determine the full impact of the advantages and disadvantages when	The mechanisms of
evaluating a solution.	external controls and
New technologies offer solutions based on cost benefit ratios, scientific ideas and principles,	internal feedback loops
empirical evidence, and logical arguments regarding relevant factors (e.g., economic,	are important elements
societal, environmental, and ethical considerations).	for a stable system.
When scientists and engineers create solutions to problems, they use specific criteria to	A change in one part of
guide the development of their solutions.	a system can cause
When scientists and engineers create solutions to problems, they consider the constraints	changes to other parts
of their design solutions including cost, safety, aesthetics, and reliability.	of the system, resulting
	in positive or negative

feedback loops. The changes (negative or positive) can stabilize

or destabilize a system.

DEPARTMENT of Louisiana Believes

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.		

Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).

Performance Expectation and Louisiana Connectors

HS-ESS3-5 Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.

LC-ESS3-5a Use geoscience data to determine the relationship between a change in climate (e.g., precipitation, temperature) and its impact in a region.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	GLOBAL CLIMATE CHANGE	STABILITY AND CHANGE
Analyzing data in 9-12 builds on K-8	Though the magnitudes of human impacts are greater than they have ever been, so too are	Change and rates of
experiences and progresses to	human abilities to model, predict, and manage current and future impacts. (HS.ESS3D.a)	change can be
introducing more detailed statistical		quantified and modeled
analysis, the comparison of data	Technological advances throughout history have led to the discovery and use of different	over very short or long
sets for consistency, and the use of	forms of energy and to more efficient use of all forms of energy.	periods of time. Some
models to generate and analyze	The increase in energy demand and the new technologies being developed to meet these	system changes are
data.	needs and improve the efficiencies of energy systems have social and environmental	irreversible.
 Analyze data using tools, 	consequences.	
technologies, and/or models (e.g., computational, mathematical) in	Changes in weather technology have occurred in the areas of gathering weather data and using computers to make forecasts.	Change and rates of change can be
order to make valid and reliable	This has allowed scientists to model, predict, and manage current and future impacts using	quantified over very
scientific claims or determine an	global climate models.	short or very long
optimal design solution.	Geoscience data is used to explain climate change over a wide-range of timescales	periods of time.
a parameter grant and a parameter and a parame	including:	Change and rates of
Analyze data using tools in order to	• one to ten years: large volcanic eruptions, ocean circulation;	change can be modeled
make valid and reliable scientific	• ten to hundreds of years: changes in human activity, ocean circulation, solar output;	over very short or very
claims.	• tens of thousands to hundreds of thousands of years: changes to Earth's orbit and the	long periods of time.
Analyze data using tools in order to	orientation of its axis; and	Some system changes
determine an optimal design	• tens of millions to hundreds of millions of years: long-term changes in atmospheric	are irreversible.
solution.	composition.	
Analyze data using technology in		
order to make valid and reliable		
scientific claims.		
Analyze data using technology in		
order to determine an optimal		
design solution.		
Analyze data using models in order		
to make valid and reliable scientific		
claims.		
Analyze data using models in order		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
to determine an optimal design solution.		

Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).

Performance Expectation and Louisiana Connectors

HS-ESS3-6 Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

LC-HS-ESS3-6a Use representations to describe the relationships among Earth systems and how those relationships are being modified due to human activity (e.g., increase in atmospheric carbon dioxide, increase in ocean acidification, effects on organisms in the ocean (coral reef), carbon cycle of the ocean, possible effects on marine populations).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WEATHER AND CLIMATE	SYSTEMS AND SYSTEM
computational thinking:	Current models predict that, although future regional climate changes will be complex and	MODELS
Mathematical and computational	varied, average global temperatures will continue to rise. The outcomes predicted by global	When investigating or
thinking in 9-12 builds on K-8	climate models strongly depend on the amounts of human-generated greenhouse gases	describing a system, the
experiences and progresses to using	added to the atmosphere each year and by the ways in which these gases are absorbed by the	boundaries and initial
algebraic thinking and analysis, a	ocean and biosphere. (HS.ESS2D.d)	conditions of the system
range of linear and nonlinear		need to be defined and
functions (e.g., trigonometric,	Current models of Earth's natural systems include system boundaries, initial conditions,	their inputs and outputs
exponential and logarithmic) and	inputs and outputs, and relationships that determine the interaction (e.g., the relationship	analyzed and described
computational tools for statistical	between atmospheric carbon dioxide and production of photosynthetic biomass and ocean	using models.
analysis to analyze, represent, and	acidification).	
model data. Simple computational	Increased carbon dioxide level in the atmosphere traps more heat. This will lead to a	When investigating a
simulations are created and used	gradual increase in the temperature of Earth's atmosphere.	system, the boundaries
based on mathematical models of	Human activities, such as the release of greenhouse gases from burning fossil fuels, are	and initial conditions of
basic assumptions.	major factors in the current rise in Earth's mean surface temperature.	the system need to be
Use a computational	Based on current models, Earth's average global temperatures will continue to rise due to	defined.
representation of phenomena or	an increase in human-generated greenhouse gases (e.g., carbon dioxide and methane) in	When describing a
design solutions to describe and/or	Earth's atmosphere and associated feedbacks.	system, the boundaries
support claims and/or explanations.	Human impact on climate change must be addressed.	and initial conditions of
	Reducing the level of climate change and reducing human vulnerability to whatever climate	the system need to be
Use a computational	changes do occur depend on the understanding of climate science and engineering	defined.
representation of phenomena to	capabilities.	When investigating a
describe claims.		system, the inputs and
Use a computational	GLOBAL CLIMATE CHANGE	outputs need to be
representation of phenomena to	Important discoveries are still being made about how the ocean, the atmosphere, and the	analyzed and described
describe explanations.	biosphere interact and are modified in response to human activities (e.g., through computer	using models.
Use a computational	simulations and other discoveries satellite imagery). (HS.ESS3D.b)	When describing a
representation of phenomena to		system, the inputs and
support claims.	Scientists continually learn more about how Earth's systems interact and are changed by	outputs need to be
Use a computational	human activities.	analyzed and described
representation of phenomena to	Modern civilization depends on major technological systems.	using models.
support explanations.	Through computer simulations and other studies, important discoveries are still being made	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Use a computational representation of a design solution to describe claims. Use a computational representation of a design solution to describe explanations. Use a computational representation of a design solution to support claims. Use a computational representation of a design solution to support claims. Use a computational representation of a design solution to support explanations.	about how the ocean, atmosphere, and biosphere interact and are modified in response to human activities. Scientists and engineers use human-generated models including computer simulations, to predict how the amount of greenhouse gases in Earth's atmosphere impacts the biological and physical processes on Earth (e.g., oceanic acidification, coral bleaching, ocean circulation, etc.).	Crosscatting Concept

Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.

HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.

LC-HS-LS1-1a Relate DNA molecules to the way cells store and use information to guide their functions.

LC-HS-LS1-1b Relate groups of specialized cells (e.g., heart cells, nerve cells, muscle cells, epithelial cells, fat cells, blood cells) within organisms to the performance of essential functions of life.

LC-HS-LS1-1c Identify evidence supporting an explanation of how a substance called DNA carries genetic information in all organisms which codes for the proteins that are essential to an organism.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	STRUCTURE AND FUNCTION	STRUCTURE AND
designing solutions: Constructing	Systems of specialized cells within organisms help them perform the essential functions of	FUNCTION
explanations (science) and designing	life. (HS.LS1A.a)	Investigating or
solutions (engineering) in 9-12		designing new systems
builds on K-8 experiences and	All living things are made of cells.	or structures requires a
progresses to explanations and	In multicellular organisms, the cells are often quite different from each other in size and	detailed examination of
designs that are supported by	structure.	the properties of
multiple and independent student-	The structure of each kind of cell is suited to the unique function it carries out.	different materials, the
generated sources of evidence	Systems of cells, tissues, and organs work together to meet the needs of the whole	structures of different
consistent with scientific ideas,	organism.	components, and
principles, and theories.		connections of
 Construct and revise an 	All cells contain genetic information in the form of DNA molecules. Genes are regions in the	components to reveal
explanation based on valid and	DNA that contain the instructions that code for the formation of proteins which carry out the	its function and/or solve
reliable evidence obtained from a	essential functions of life. (HS.LS1A.c)	a problem.
variety of sources (including		
students' own investigations,	All cells contain DNA.	Designing and/or
models, theories, simulations, peer	DNA contains regions that are called genes.	investigating new
review) and the assumption that	The sequence of genes contains instructions that code for proteins.	structures/systems
theories and laws that describe the	Groups of specialized cells (tissues) use proteins to carry out functions that are essential to	requires knowledge of
natural world operate today as they	the organism.	the properties (e.g.,
did in the past and will continue to		rigidity and hardness)
do so in the future.		of the materials needed
		for specific parts of the
Construct an explanation based on		structure.
valid and reliable evidence from a		Designing and/or

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
variety of sources.		investigating new
Construct an explanation based on		structures/systems
valid and reliable evidence from the		requires knowledge of
assumption that theories and laws		the structures of
that describe the natural world		different components.
operate today as they did in the		Designing and/or
past and will continue to do so in		investigating a new
the future.		structure requires a
Revise an explanation based on		detailed examination of
valid and reliable evidence from a		the connections of
variety of sources.		components to reveal
Revise an explanation based on		its function.
valid and reliable evidence from the		Designing and/or
assumption that theories and laws		investigating a new
that describe the natural world		structure requires a
operate today as they did in the		detailed examination of
past and will continue to do so in		the connections of
the future.		components to reveal
		any problems.

Emphasis is on the conceptual understanding that DNA sequences determine the amino acid sequence and thus protein structure. Students can produce scientific writing, or presentations, and/or physical models that communicate constructed explanations.

Performance Expectation and Louisiana Connectors

HS-LS1-2 Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. *LC-HS-LS1-2a Using model(s), identify that different systems of the body carry out essential functions (e.g., digestive system, respiratory system, circulatory system, nervous system).*

LC-HS-LS1-2b Using model(s), identify the hierarchical organization of systems that perform specific functions within multicellular organisms.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND FUNCTION	SYSTEMS AND SYSTEM
Modeling in 9-12 builds on K-8	Multicellular organisms have a hierarchical structural organization, in which any one system is	MODELS
experiences and progresses to using	made up of numerous parts and is itself a component of the next level. (HS.LS1A.b)	Models (e.g., physical,
synthesizing and developing models		mathematical,
to predict and show relationships	Cells may be organized into larger structures beginning with tissues and increasing in size	computer models) can
among variables between systems	and complexity to maintain organs, organ-systems, and eventually an organism.	be used to simulate
and their components in the natural	Multicellular organisms have a hierarchical structural organization in which one system is	systems and
and designed world(s).	made of numerous parts.	interactions—including
 Develop, revise, and/or use a 	The hierarchical organization of interacting systems provide specific functions within	energy, matter, and
model based on evidence to	multicellular organisms.	information flows—
illustrate and/or predict the	Models can be used to illustrate how the parts (e.g., organ system, organs, and their	within and between
relationships between systems or	component tissues) and processes (e.g., transport of fluids, motion) of body systems in	systems at different
between components of a system.	multicellular organisms function.	scales.
Develop or use a model to identify		Models can be used to
and describe the components of a		simulate systems.
system.		Models can be used to
Develop or use a model to identify		simulate interactions.
and describe the relationships		Models can be used
between the components of a		simulate interactions
system.		within systems at
Develop or use a model to predict		different scales.
relationships between systems or		Models can be used
within a system.		simulate interactions
Identify that models can help		between systems at
illustrate relationships between		different scales.
systems or within a system.		

Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, or organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.

HS-LS1-3 Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis in living organisms. *LC-HS-LS1-3a Identify how different organisms react (e.g., heart rate, body temperature) to changes in their external environment. LC-HS-LS1-3b Identify examples of how organisms use feedback mechanisms to maintain dynamic homeostasis.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND FUNCTION	STABILITY AND CHANGE
investigations: Planning and	Feedback mechanisms maintain a living system's internal conditions within certain limits and	Feedback (negative or
carrying out investigations to	mediate behaviors, allowing the organism to remain alive and functional even as external	positive) can stabilize or
answer questions or test solutions	conditions change within some range. Feedback mechanisms can promote (through positive	destabilize a system.
to problems in 9-12 builds on K-8	feedback) or inhibit (through negative feedback) activities within an organism to maintain	
experiences and progresses to	homeostasis. (HS.LS1A.d)	Stability denotes a

LOUISIANA CONNECTORS Component Cards Science

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
include investigations that provide		condition in which a
evidence for and test conceptual,	Organisms' systems can maintain balance (homeostasis) within an organism to ensure its	system is in balance.
mathematical, physical, and	survival.	A feedback loop is any
empirical models.	Positive and negative feedback mechanisms regulate organisms' systems in order to help an	mechanism in which a
 Plan and conduct an investigation 	organism maintain homeostasis.	condition triggers some
individually and collaboratively to	These feedback mechanisms can encourage or discourage physiological responses in living	action that causes a
produce data to serve as the basis	systems.	change in that same
for evidence, and in the design:		condition.
decide on types, how much, and		The mechanisms of
accuracy of data needed to produce		external controls and
reliable measurements and consider		internal feedback loops
limitations on the precision of the		are important elements
data (e.g., number of trials, cost,		for a stable system.
risk, time), and refine the design		A change in one part of
accordingly.		a system can cause
		changes to other parts
Plan an investigation individually		of the system, resulting
and collaboratively to produce data		in positive or negative
to serve as the basis for evidence,		feedback loops.
and in the design: decide on types,		The changes (negative
how much, and accuracy of data		or positive) can stabilize
needed to produce reliable		or destabilize a system.
measurements.		
Revise an investigation individually		
and collaboratively to produce data		
to serve as the basis for evidence.		
Conduct an investigation		
individually and collaboratively to		
produce data to serve as the basis		
for evidence.		

Examples of investigations could include heart rate responses to exercise, stomate responses to moisture and temperature, root development in response to water levels, or cell response to hypertonic and hypotonic environments.

Performance Expectation and Louisiana Connectors

HS-LS1-4 Use a model to illustrate the role of the cell cycle and differentiation in producing and maintaining complex organisms. LC-HS-LS1-4a Identify how growth and/or maintenance (repair/replacement) occurs when cells multiply (i.e., mitosis) using a model.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	GROWTH AND DEVELOPMENT OF ORGANISMS	SYSTEMS AND SYSTEM
Modeling in 9-12 builds on K-8	In multicellular organisms the cell cycle is necessary for growth, maintenance and repair of	MODELS
experiences and progresses to using,	multicellular organisms. Disruptions in the cell cycles of mitosis and meiosis can lead to	Models (e.g., physical,
synthesizing, and developing models	diseases such as cancer. (HS.LS1B.a)	mathematical,

LOUISIANA CONNECTORS Component Cards Science

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
to predict and show relationships		computer models) can
among variables between systems	Cells undergo a regular sequence of growth and division called the cell cycle.	be used to simulate
and their components in the natural	The amount of time it takes to complete the cell cycle varies in different cells.	systems and
and designed world(s).	Complex multicellular organisms maintain themselves by growing and developing through	interactions—includin
Develop, revise, and/or use a	cellular divisions (mitosis) and differentiation of cells.	energy, matter, and
model based on evidence to	There are times when cell cycles are disrupted.	information flows—
llustrate and/or predict the	Cancer is a disease that can occur when control of the cell cycle is lost.	within and between
relationships between systems or	Cancer is caused by uncontrolled cell division.	systems at different
petween components of a system.		scales.
	The organism begins as a single cell (fertilized egg) that divides successively to produce many	
Develop a model based on evidence	cells, with each parent cell passing identical genetic material (two variants of each	Models can be used to
to illustrate the relationships	chromosome pair) to both daughter cells. (HS.LS1B.b)	simulate systems.
between systems.		Models can be used t
Develop a model based on evidence	During cell division, the organism's genetic material is copied into each new cell.	simulate interactions
to predict the relationships	Daughter cells receive identical genetic information from a parent cell or a fertilized egg.	Models can be used
between systems.	Mitotic cell division produces two genetically identical daughter cells from one parent cell.	simulate interactions
Develop a model based on evidence	Differences between different cell types within a multicellular organism are due to	within systems at
to illustrate the relationships	differentiated gene expression.	different scales.
between components of a system.		Models can be used
Develop a model based on evidence	Cellular division and differentiation (stem cell) produce and maintain a complex organism,	simulate interactions
to predict the relationships	composed of systems of tissues and organs that work together to meet the needs of the	between systems at
between components of a system.	whole organism. (HS.LS1B.c)	different scales.
Revise a model based on evidence		
to illustrate the relationships	Cellular division and differentiation are required to meet the needs of living organisms.	
between systems.	Mitotic cell division results in more cells that: 1) allow growth of the organism; 2) can	
Revise a model based on evidence	differentiate to create different cell types; and 3) can replace dead or damaged cells to	
to predict the relationships	maintain a complex organism.	
between systems.	In multicellular organisms, the body is a system of multiple interacting subsystems.	
Revise a model based on evidence	These subsystems are groups of cells that work together to form tissues and organs that are	
to illustrate the relationships	specialized for particular body functions.	
between components of a system.		
Revise a model based on evidence		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
to predict the relationships		
between components of a system.		
Use a model based on evidence to		
illustrate the relationships between		
systems.		
Use a model based on evidence to		
predict the relationships between		
systems.		
Use a model based on evidence to		
illustrate the relationships between		
components of a system.		
Use a model based on evidence to		
predict the relationships between		
components of a system.		

Emphasis is on conceptual understanding that mitosis passes on genetically identical materials via replication, not on the details of each phase in mitosis.

Performance Expectation and Louisiana Connectors

HS-LS1-5 Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. *LC-HS-LS1-5a Identify model of photosynthesis, which shows the conversion of light energy to stored chemical energy.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	The process of photosynthesis converts light energy to stored chemical energy by converting	Changes of energy and
experiences and progresses to using	carbon dioxide plus water into sugars plus released oxygen (HS LS1C a)	matter in a system can

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
synthesizing and developing models		be described in terms of
to predict and show relationships	The processes of photosynthesis (making oxygen and sugar) are done in plants,	energy and matter flows
among variables between systems	photosynthetic bacteria and protists.	into, out of, and within
and their components in the natural	Photosynthesis transforms light energy into stored chemical energy by converting carbon	that system.
and designed world.	dioxide plus water into sugars plus released oxygen.	
 Develop, revise, and/or use a 	The energy needed for most life is ultimately derived from the sun through photosynthesis.	The processes of energy
model based on evidence to	Plants, algae (including phytoplankton), and other energy fixing microorganisms use	transformation and
illustrate and/or predict the	sunlight, water, and carbon dioxide to facilitate photosynthesis, which stores energy, forms	energy transfer can be
relationships between systems or	plant matter, releases oxygen, and maintains plants' activities.	used to understand the
between components of a system.		changes that take place
		in physical systems.
Develop or use a model to identify		
and describe the components of a		
system.		
Develop or use a model to identify		
and describe the relationships		
between the components of a		
system.		
Develop or use a model to predict relationships between systems or		
within a system.		
Identify that models can help		
illustrate relationships between		
systems or within a system.		
systems of within a system.		

Emphasis is on illustrating inputs and outputs of matter, the transfer and transformation of energy in photosynthesis by plants, and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, conceptual models, and/or laboratory investigations.

HS-LS1-6 Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.

LC-HS-LS1-6a Using a model(s), identify how organisms take in matter and rearrange the atoms in chemical reactions to form different products allowing for growth and maintenance.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
designing solutions: Constructing	The process of photosynthesis converts light energy to stored chemical energy by converting	Changes of energy and
explanations (science) and designing	carbon dioxide plus water into sugars plus released oxygen. (HS.LS1C.a)	matter in a system can
solutions (engineering) in 9-12		be described in terms of

LOUISIANA CONNECTORS Component Cards Science

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
builds on K-8 experiences and	The processes of photosynthesis (making oxygen and sugar) are done in plants,	energy and matter flows
progresses to explanations	photosynthetic bacteria and protists.	into, out of, and within
and designs that are supported by	Photosynthesis transforms light energy into stored chemical energy by converting carbon	that system.
multiple and independent student-	dioxide plus water into sugars plus released oxygen.	
generated sources of evidence	The energy needed for most life is ultimately derived from the sun through photosynthesis.	The processes of energy
consistent with scientific ideas,	Plants, algae (including phytoplankton), and other energy fixing microorganisms use	transformation and
principles, and theories.	sunlight, water, and carbon dioxide to facilitate photosynthesis, which stores energy, forms	energy transfer can be
 Construct and revise an 	plant matter, releases oxygen, and maintains plants' activities.	used to understand the
explanation based on valid and		changes that take place
reliable evidence obtained from a	The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon	in physical systems.
variety of sources (including	backbones are used to make amino acids and other carbon-based molecules that can be	
students' own investigations,	assembled into larger molecules (such as proteins or DNA) used, for example, to form new	
models, theories, simulations, peer	cells. (HS.LS1C.b)	
review) and the assumption that		
theories and laws that describe the	Molecules combine, break apart, and recombine to form necessary compounds for life.	
natural world operate today as they	The carbon, hydrogen, and oxygen atoms from sugar molecules formed in or ingested by an	
did in the past and will continue to	organism are those same atoms found in its amino acids and other large carbon-based	
do so in the future, and the	molecules.	
assumption that theories and laws	Sugar molecules are composed of carbon, oxygen, and hydrogen.	
that describe the natural world	Amino acids and other carbon-based molecules are composed of carbon, oxygen, and	
operate today as they did in the past	hydrogen.	
and will continue to do so in the		
future.		
Construct an explanation based on		
valid and reliable evidence from a		
variety of sources.		
Construct an explanation based on		
valid and reliable evidence from the		
assumption that theories and laws		
that describe the natural world		
operate today as they did in the		

Emphasis is on students constructing explanations for how sugar molecules are formed through photosynthesis and the components of the reaction (i.e., carbon, hydrogen, oxygen). This hydrocarbon backbone is used to make amino acids and other carbon-based molecules that can be assembled (anabolism) into larger molecules (such as proteins or DNA). Examples of models could include diagrams, chemical equations, or conceptual models.

Performance Expectation and Louisiana Connectors

HS-LS1-7 Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy.

LC-HS-LS1-7a Using a model(s), identify respiration as the transfer of stored energy to the cell to sustain life's processes (i.e., energy to muscles or energy for maintaining body temperature).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models: Modeling in 9-12 builds on K-8	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS As matter and energy flow through different organizational levels of living systems, chemical	ENERGY AND MATTER Energy cannot be

LOUISIANA CONNECTORS Component Cards Science

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
experiences and progresses to using	elements are recombined in different ways to form different products. (HS.LS1C.c)	created or destroyed—it
synthesizing and developing models		only moves between
to predict and show relationships	Energy drives the cycling of matter within and between systems.	one place and another
among variables between systems	All organisms take in matter and rearrange the atoms in chemical reactions.	place, between objects
and their components in the natural	The process of creating the compounds needed for life is done by organisms at a cellular	and/or fields, or
and designed world(s).	level.	between systems.
 Develop, revise, and/or use a 	Chemical reactions can create products that are more complex than the reactants.	
model based on evidence to	Chemical reactions involve changes in the energies of the molecules involved in the reaction.	Energy cannot be
illustrate and/or predict the		created or destroyed.
relationships between systems or	As a result of these chemical reactions, energy is transferred from one system of interacting	Energy can be
between components of a system.	molecules to another. Cellular respiration is a chemical process in which the bonds of food	transferred from one
	molecules and oxygen molecules are broken and new compounds are formed that can	object to another and
Develop a model based on evidence	transport energy to muscles. Cellular respiration also releases the energy needed to maintain	can be transformed
to illustrate the relationships	body temperature despite ongoing energy transfer to the surrounding environment.	from one form to
between systems.	(HS.LS1C.d)	another, but the total
Develop a model based on evidence		amount of energy never
to predict the relationships	The process of cellular respiration (making energy from sugar) is done in plants and	changes.
between systems.	animals.	
Develop a model based on evidence	Cellular respiration in plants and animals involves chemical reactions with oxygen that	
to illustrate the relationships	release stored energy.	
between components of a system.	In cellular respiration, complex molecules containing carbon react with oxygen to produce	
Develop a model based on evidence	carbon dioxide and other materials.	
to predict the relationships	Cellular respiration also releases the energy needed to maintain body temperature.	
between components of a system.		
Revise a model based on evidence		
to illustrate the relationships		
between systems.		
Revise a model based on evidence		
to predict the relationships		
between systems.		
Revise a model based on evidence		
to illustrate the relationships		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
between components of a system.		
Revise a model based on evidence		
to predict the relationships		
between components of a system.		
Use a model based on evidence to		
illustrate the relationships between		
systems.		
Use a model based on evidence to		
predict the relationships between		
systems.		
Use a model based on evidence to		
illustrate the relationships between		
components of a system.		
Use a model based on evidence to		
predict the relationships between		
components of a system.		

Emphasis is on the conceptual understanding of the inputs and outputs of the processes of aerobic and anaerobic cellular respiration. Examples of models could include diagrams, chemical equations, conceptual models and/or laboratory investigations.

Performance Expectation and Louisiana Connectors

HS-LS1-8 Obtain, evaluate, and communicate information about (1) viral and bacterial reproduction and adaptation, (2) the body's primary defenses against infection, and (3) how these features impact the design of effective treatment.

LC-LS1-8a Identify the process by which a virus uses a host cell's functions to make new viruses.

LC-LS1-8b Recognize that most bacteria reproduce asexually resulting in two cells exactly like the parent cell.

LC-LS1-8c Identify ways to protect against infectious diseases to maintain a body's health (e.g., eat nutritious food, washing hands, rest, exercise, etc.).

LC-LS1-8d Identify treatments and/or prevention of viral and/or bacterial infections (e.g., antibiotics and vaccines).

LOUISIANA CONNECTORS Component Cards Science

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	PUBLIC HEALTH	SCALE, PROPORTION,
communicating information:	Viruses are obligate intracellular parasites that replicate using a cell's protein expression	AND QUANTITY
Obtaining, evaluating, and	mechanisms. (HS.LS1E.a)	The significance of a
communicating information in 9-12		phenomenon is
builds on K-8 experiences and	Viruses are considered nonliving because they are not composed of cells.	dependent on the scale,
progresses to evaluating the validity	Viruses do not use energy to grow or respond to their surroundings.	proportion, and quantity
and reliability of the claims,	Obligate intracellular parasites cannot reproduce outside their host cell.	at which it occurs.
methods, and designs.	An obligate intracellular parasite is entirely reliant on intracellular resources.	
 Critically read scientific literature 	Obligate intracellular parasites of humans include viruses.	The size and time scales
adapted for classroom use to		relevant to various
determine the central ideas or	Vaccines provide immunity to infections by exposing the immune system to antigens before	objects, systems, and
conclusions and/or to obtain	infection which decreases the immune system's response time. Some vaccines may require	processes determine
scientific and/or technical	more than one dose. (HS.LS1E.b)	the significance of a
information to summarize complex		phenomena.
evidence, concepts, processes, or	A vaccine is a substance that stimulates the body to produce chemicals that destroy viruses,	Specific phenomena
information by presenting them in	bacteria, or other disease-causing organisms.	correspond to a specific
simpler but still accurate terms.	Vaccines can prevent some viral and bacterial diseases.	scale (e.g., the size of
	Vaccines are important tools to prevent the spread of infectious diseases.	the nucleus of an atom
Engage in a critical reading of		to the size of the galaxy
primary scientific literature	Antibiotics are effective treatments against most bacterial infections. Some bacteria may	and beyond).
(adapted for classroom use) to	develop resistance to these treatments. (HS.LS1E.c)	
determine the central ideas to		
summarize complex evidence,	An antibiotic is a chemical that can kill bacteria without harming a person's cells.	
concepts, processes, or information	Bacterial diseases can be treated with antibiotics.	
by presenting them in simpler but	Resistant bacteria are able to survive in the presence of an antibiotic.	
still accurate terms.	Those bacteria survive and reproduce.	
Engage in a critical reading of	Today, many resistant bacteria exist.	
primary scientific literature		
(adapted for classroom use) to	Microorganisms can cause diseases and can provide beneficial services. Microorganisms live	
determine the conclusions to	in a variety of environments as both parasites and free-living organisms. (HS.LS1E.d)	
summarize complex evidence,		
concepts, processes, or information	Parasites are organisms that live on or in a host and causes harm to the host.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
by presenting them in simpler but	Parasites and other microorganisms can cause disease.	
still accurate terms.	Microorganisms can provide beneficial services.	
Engage in a critical reading of	Bacteria are involved in fuel and food production, environmental recycling and cleanup, and	
primary scientific literature	the production of medicines.	
(adapted for classroom use) to	Microorganisms live in a variety of environments.	
obtain scientific information to summarize complex evidence,	Microorganisms can be both parasites and free-living organisms.	
concepts, processes, or information	Microorganisms can reproduce quickly. (HS.LS1E.e)	
by presenting them in simpler but		
still accurate terms.	Microorganisms can reproduce quickly. Some bacteria can reproduce as often as once every	
Engage in a critical reading of	20 minutes.	
primary scientific literature		
(adapted for classroom use) to		
obtain technical information to		
summarize complex evidence,		
concepts, processes, or information		
by presenting them in simpler but		
still accurate terms.		

Emphasis is on the speed of reproduction which produces many generations in a short time, allowing for rapid adaptation, the role of antibodies in the body's immune response to infection and how vaccination protects an individual from infectious disease.

Performance Expectation and Louisiana Connectors

HS-LS2-1 Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity, biodiversity and populations of ecosystems at different scales.

LC-HS-LS2-1a Recognize that the carrying capacities of ecosystems are related to the availability of living and nonliving resources and challenges (e.g., predation, competition, disease).

LC-HS-LS2-1b Use a graphical representation to identify carrying capacities in ecosystems as limits to the numbers of organisms or populations they can support.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	SCALE, PROPORTION,
computational thinking:	Ecosystems have carrying capacities, which are limits to the numbers of organisms and	AND QUANTITY
Mathematical and computational	populations they can support. These limits result from such factors as the availability of living	The significance of a
thinking in 9-12 builds on K-8	and nonliving resources and from such challenges as predation, competition, and disease that	phenomenon is
experiences and progresses to using	affect biodiversity, including genetic diversity within a population and species diversity within	dependent on the scale,
algebraic thinking and analysis, a	an ecosystem. Organisms would have the capacity to produce populations of great size were	proportion, and quantity
range of linear and nonlinear	it not for the fact that environments and resources are finite. This fundamental tension	at which it occurs.
functions (e.g., trigonometric,	affects the abundance (number of individuals) of species in any given ecosystem. (HS.LS2A.a)	
exponential and logarithmic) and		The size and time scales
computational tools for statistical	Carrying capacities are limits to the numbers of organisms and populations an ecosystem	relevant to various
analysis to analyze, represent, and	can support.	objects, systems, and
model data. Simple computational	The carrying capacity for a specific population in an ecosystem depends on the resources	processes determine
simulations are created and used	available.	the significance of a
based on mathematical models of	These limits can be a result of shifting living (predators, competition, and available food)	phenomena.
basic assumptions.	and non-living (shelter, water, and climate) factors within a specific environment.	Specific phenomena
• Use mathematical, computational,	Given adequate biotic and abiotic resources and no disease or predators, populations	correspond to a specific
and/or algorithmic representations	increase at rapid rates.	scale (e.g., the size of
of phenomena or design solutions to	Resources, (limiting factors), predation and climate, limit the growth of populations in	the nucleus of an atom
describe and/or support claims	specific niches in an ecosystem.	to the size of the galaxy
and/or explanations.		and beyond).
	Human activity directly and indirectly affect biodiversity and ecosystem health (e.g., habitat	
Use mathematical or algorithmic	fragmentation, introduction of nonnative or invasive species, overharvesting, pollution and	
forms for scientific modeling of	climate change). (HS.LS2A.b)	
phenomena and/or design		
solutions to describe claims.	Humans are an integral part of the natural system, and human activities can alter the	
Use mathematical or algorithmic	stability of ecosystems.	
forms for scientific modeling of	Human-related changes to one or more of these factors can result in an ecosystem breaking	
phenomena and/or design	down or the creation of an entirely new ecosystem.	
solutions to support claims.	Human activities have a major effect on other species. For example, increased land use	
Use mathematical or algorithmic	reduces habitat available to other species, pollution changes the chemical composition of	
forms for scientific modeling of	air, soil, and water, and introduction of non-native species disrupts the ecological balance.	
phenomena and/or design		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
solutions to describe explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena and/or design		
solutions to support explanations.		

Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate and competition. Examples of mathematical comparisons could include graphs, charts, histograms, or population changes gathered from simulations or historical data sets.

Performance Expectation and Louisiana Connectors

HS-LS2-4 Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. *LC-HS-LS2-4a* Use a graphical or mathematical representation to identify the changes in the amount of matter as it travels through a food web. *LC-HS-LS2-4b* Use a graphical or mathematical representation to identify the changes in the amount of energy as it travels through a food web.

LOUISIANA CONNECTORS Component Cards Science

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	CYCLES OF MATTER AND ENERGY TRANSFER IN ECOSYSTEMS	ENERGY AND MATTER:
computational thinking:	Energy is inefficiently transferred from one trophic level to another that affect the relative	FLOWS, CYCLES, AND
Mathematical and computational	number of organisms that can be supported at each trophic level and necessitates a constant	CONSERVATION
thinking in 9-12 builds on K-8	input of energy from sunlight or inorganic compounds from the environment. (HS.LS2B.b)	Energy cannot be
experiences and progresses to using	Only a fraction of the energy available at the lower level of a food web is transferred up,	created or destroyed—it
algebraic thinking and analysis, a	resulting in fewer organisms at higher levels.	only moves between
range of linear and nonlinear	The inefficiency of energy transfer determines the number of trophic levels and affects the	one place and another
functions (e.g., trigonometric,	relative number of organisms at each trophic level in an ecosystem.	place, between objects
exponential and logarithmic) and	All energy is conserved as it passes from the sun through an ecosystem.	and/or fields, or
computational tools for statistical	During energy transformations, some energy is converted to unusable heat.	between systems.
analysis to analyze, represent, and	A continual input of energy from the sun keeps the process going.	
model data. Simple computational	On average, regardless of scale, 10% of energy is transferred up from one trophic level to	Energy cannot be
simulations are created and used	another.	created or destroyed.
based on mathematical models of		Energy can be
basic assumptions.	Photosynthesis, cellular respiration, decomposition and combustion are important	transferred from one
• Use mathematical, computational,	components of the carbon cycle, in which carbon is exchanged among the biosphere,	object to another and
and/or algorithmic representations	atmosphere, hydrosphere, and geosphere through chemical, physical, geological, and	can be transformed
of phenomena or design solutions to	biological processes. (HS.LS2B.c)	from one form to
describe and/or support claims	Carbon is an essential element cycled through all levels of life from cellular to ecosystems	another, but the total
and/or explanations.	and is required for survival of all living organisms.	amount of energy never
	Photosynthesis (the main way that solar energy is captured and stored on Earth) and	changes.
Use mathematical or algorithmic	cellular respiration are important components of the carbon cycle, in which carbon is	
forms for scientific modeling of	exchanged between living and nonliving systems.	
phenomena and/or design	Matter needed to sustain life in ecosystems is continually recycled (e.g., carbon cycle, water	
solutions to describe claims.	cycle, nitrogen cycle, mineral cycles) among organisms and between organisms and the	
Use mathematical or algorithmic	environment.	
forms for scientific modeling of		
phenomena and/or design	Photosynthesis, chemosynthesis, aerobic and anaerobic respiration and cellular respiration	
solutions to support claims.	(including anaerobic processes) provide most of the energy for life processes. Environmental	
Use mathematical or algorithmic	conditions restrict which and when reactions can occur. (HS.LS2B.a) (suggested extension)	
forms for scientific modeling of	The processes of photosynthesis (making oxygen and sugar) and cellular respiration	
phenomena and/or design	(making energy from sugar done in plants and animals) provide most of the energy for life	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
solutions to describe explanations. Use mathematical or algorithmic forms for scientific modeling of phenomena and/or design solutions to support explanations.	on earth. The reactants and products of photosynthesis and cellular respiration (aerobic and anaerobic) can be used to relate the Law of Conservation of Matter and the Law of Conservation of Energy to ecosystems, using the carbon cycle can as a reference.	

Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen, and nitrogen being conserved as they move through an ecosystem.

HS-LS2-6 Evaluate the claims, evidence and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.

LC-HS-LS2-6a Use evidence to identify how modest biological or physical changes versus extreme changes affect stability and change (e.g., number and types of organisms) in ecosystems.

LC-HS-LS2-6b Evaluate explanations of how living things in an ecosystem are affected by changes in the environment (e.g., changes to the food supply, climate change, or the introduction of predators).

LC-HS-LS2-6c Evaluate explanations of how interactions in ecosystems maintain relatively stable conditions, but changing conditions may result in a new ecosystem.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
evidence: Engaging in argument	The dynamic interactions within an ecosystem can keep its numbers and types of organisms	Much of science deals
from evidence in 9-12 builds on K-8	relatively constant over long periods of time under stable conditions. If a modest biological or	with constructing
experiences and progresses to using	physical disturbance to an ecosystem occurs, it may return to its more or less original status	explanations of how
appropriate and sufficient evidence	(i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme	things change and how
and scientific reasoning to defend	fluctuations in conditions or the size of any population, however, can challenge the	they remain stable.
and critique claims and explanations	functioning of ecosystems in terms of resources and habitat availability and may result in new	
about the natural and designed	ecosystems. (HS.LS2C.a)	Science deals with
world(s). Arguments may also come		constructing
from current scientific or historical	Under most circumstances, a natural balance is maintained within an ecosystem.	explanations of how
episodes in science.	Organisms both cooperate and compete in ecosystems.	things change.
Evaluate the claims, evidence,	The interrelationships and interdependencies of these organisms may generate complex	Science deals with
and/or reasoning	ecosystems that are stable over long periods of time and tend to have cyclic fluctuations	constructing
behind currently accepted	around an equilibrium (i.e., the ecosystem is resilient).	explanations of how
explanations or solutions	Extreme fluctuations, such as from natural disasters, can challenge the functioning of	things remain stable.
to determine the merits of	ecosystems in terms of resources and habitat availability.	
arguments.	These changes can result in an ecosystem breaking down or the creation of an entirely new	
	ecosystem.	
Evaluate the claims behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the claims behind		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted solutions to		
determine the merits of arguments.		

Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood and extreme changes, such as volcanic eruption or sea level rise. Emphasis should be on describing drivers of ecosystem stability and change, not on the organismal mechanisms of responses and interactions.

HS-LS2-7 Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

LC-HS-LS2-7a Describe how people can help protect the Earth's environment and biodiversity (e.g., preserving ecosystems) and how a human activity would threaten Earth's environment and biodiversity (e.g., pollution, damaging habitats, over hunting).

LC-HS-LS2-7b Evaluate or refine a solution to changes in an ecosystem (biodiversity) resulting from a human activity.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
designing solutions: Constructing	Ecosystems with a greater biodiversity tend to have a greater resistance and resilience to	Much of science deals
explanations (science) and designing	change. Moreover, anthropogenic changes (induced by human activity) in the environment—	with constructing
solutions (engineering) in 9-12	including habitat destruction, pollution, introduction of invasive species, overexploitation, and	explanations of how
builds on K-8 experiences and	climate change—can disrupt an ecosystem and threaten the survival of some species.	things change and how
progresses to explanations and	(HS.LS2C.b)	they remain stable.
designs that are supported by		
multiple and independent student-	Biodiversity helps maintain stability in ecosystems.	Science deals with
generated sources of evidence	However, factors caused by humans (e.g., habitat destruction, pollution, introduction of	constructing
consistent with scientific ideas,	invasive species) have negative effects on the environment and biodiversity.	explanations of how
principles, and theories.	Some system changes are irreversible.	things change.
 Design, evaluate, and/or refine a 		Science deals with
solution to a complex real-world	BIODIVERSITY AND HUMANS	constructing
problem, based on scientific	Biodiversity is increased by the formation of new species (speciation) and decreased by the	explanations of how
knowledge, student-generated	loss of species (extinction). Humans depend on the living world for the resources and other	things remain stable.
sources of evidence, prioritized	benefits provided by biodiversity. Human activity is also having adverse impacts on	
criteria, and trade-off	biodiversity through overpopulation, overexploitation, habitat destruction, pollution,	
considerations.	introduction of invasive species, and climate change. Thus, sustaining biodiversity so that	
	ecosystem functioning and productivity are maintained is essential to supporting and	
Design a solution to a complex real-	enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of	
world problem, based on scientific	recreational or inspirational value. (HS.LS4D.a)	
knowledge, student-generated		
sources of evidence, prioritized	Humans depend on the living world for resources.	
criteria, and trade-off	Thus, protecting the environment and biodiversity helps sustain human life.	
considerations.	Ecosystems undergo major changes as a result of such human-related factors as	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Evaluate a solution to a complex	overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive	
real-world problem, based on	species, and climate change.	
scientific knowledge, student- generated sources of evidence,	Sustainability of human societies and the biodiversity that supports them require responsible management of natural resources.	
prioritized criteria, and trade-off considerations.	Changes in the physical, chemical, or biological conditions of an ecosystem can alter the diversity of species in the system.	
Refine a solution to a complex real- world problem, based on scientific	Over time, ecosystems change and populations of organisms adapt, move, or become extinct.	
knowledge, student-generated		
sources of evidence, prioritized	DEVELOPING POSSIBLE SOLUTIONS	
criteria, and trade-off considerations.	When evaluating solutions it is important to take into account a range of constraints including cost, safety, reliability and aesthetics and to consider social, cultural and environmental impacts. (HS.ETS1B.a)	
	It is important to determine the full impact of the advantages and disadvantages when evaluating a solution.	
	The development of solutions is driven by the following factors: economical, political, cultural, social, safety, and environmental.	

Examples of human activities can include urbanization, building dams, or dissemination of invasive species.

HS-LS3-1 Formulate, refine, and evaluate questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.

LC-HS-LS3-1a Identify that DNA molecules in all cells contain the instructions for traits passed from parents to offspring.

LC-HS-LS3-1b Identify appropriate questions about the relationships between DNA and chromosomes and how traits are passed from parents to offspring.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	STRUCTURE AND FUNCTION	CAUSE AND EFFECT
problems: Asking questions	All cells contain genetic information in the form of DNA molecules. Genes are regions in the	Empirical evidence is
(science) and defining problems	DNA that contain the instructions that code for the formation of proteins which carry out the	required to differentiate
(engineering) in 9-12 builds on K-8	essential functions of life. (HS.LS1A.c)	between cause and
experiences and progresses to		correlation and make
formulating, refining, and evaluating	All cells contain DNA.	claims about specific
empirically testable questions and	DNA contains regions that are called genes.	causes and effects.
design problems using models and	The sequence of genes contains instructions that code for proteins.	
simulations.	Groups of specialized cells (tissues) use proteins to carry out functions that are essential to	Evidence is required
 Ask questions that arise from 	the organism.	when attributing an
examining models or a theory, to		observed phenomenon
clarify and/or seek additional	INHERITANCE OF TRAITS	to a specific cause.
information and relationships.	Each chromosome consists of a single very long DNA molecule, and each gene on the	Evidence is required to
	chromosome is a particular segment of that DNA. The instructions for forming species'	explain the causal
Ask questions that arise from	characteristics are carried in DNA. All cells in an organism have the same genetic content, but	mechanisms in a system
examining models to clarify	the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes	under study.
relationships.	for a protein; some segments of DNA are involved in regulatory or structural functions, and	Evidence is required to
Ask questions that arise from	some have no as-yet known function. (HS.LS3A.a)	support a claim about
examining models to seek		the causal mechanisms
additional information.	All cells contain genetic information in the form of DNA molecules.	in a system under
Ask questions that arise from	DNA molecules contain the instructions for forming species' characteristics.	study.
examining a theory to clarify	All cells in an organism have the same genetic content.	
relationships.	There are several types of DNA, including DNA that codes for proteins, DNA that is involved	
Ask questions that arise from	in regulatory or structural functions (cell membrane proteins, cyclins), and DNA that has no known function (introns).	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
examining a theory to seek additional information.	In Mendel's model of inheritance an organism's phenotype is determined by the combined expression of two inherited versions they have for each gene. However, most traits follow more complex patterns of inheritance such as traits that are codominant, incomplete dominant, and polygenic. (HS.LS3A.b)	
	One allele is provided by each parent of an offspring. In complete dominance, a recessive trait can be carried by an organism. Following this mode of inheritance, a recessive trait will be masked (or will not be apparent) if the dominant allele is present.	

Emphasis should be on traits including completely dominant, incompletely dominant, and sex-linked traits (e.g., pedigrees, karyotypes, genetic disorders, Punnett squares). Examples do not need to include dihybrid crosses.

HS-LS3-2 Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.

LC-HS-LS3-2a Identify a model showing evidence that parents and offspring may have different traits.

LC-HS-LS3-2b Identify that meiosis is a process which distributes genetic material among the new cells (i.e., gametes) produced, which results in genetic variation.

LC-HS-LS3-2c Identify that when DNA makes a copy of itself, sometimes errors occur that may lead to genetic variations.

LC-HS-LS3-2d Identify examples of mutations in DNA caused by environmental factors.

LC-HS-LS3-2e Use evidence to support a claim about a source of inheritable genetic variations.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	VARIATION OF TRAITS	CAUSE AND EFFECT
evidence: Engaging in argument	In sexual reproduction, chromosomes can sometimes swap sections or cross over during the	Empirical evidence is
from evidence in 9-12 builds on K-8	process of meiosis (cell division), thereby creating new genetic combinations and thus more	required to differentiate
experiences and progresses to using	genetic variation. Although DNA replication is tightly regulated and remarkably accurate,	between cause and
appropriate and sufficient evidence	errors do occur and result in mutations, which are also a source of genetic variation.	correlation and make
and scientific reasoning to defend	Environmental factors can also cause mutations in genes, and viable mutations are inherited.	claims about specific
and critique claims and explanations	(HS.LS3B.a)	causes and effects.
about the natural and designed		
world(s). Arguments may also come	New genetic combinations lead to increased genetic variation.	Evidence is required
from current scientific or historical	New genetic combinations are the result of:	when attributing an
episodes in science.	• sexual reproduction,	observed phenomenon
• Make and defend a claim based on	• crossing over and random assortment during meiosis,	to a specific cause.
evidence about the natural world or	• mutations due to errors in DNA replication, or	Evidence is required to
the effectiveness of a design	environmental influences.	explain the causal
solution that reflects scientific		mechanisms in a system
knowledge and student-generated	Mutations may occur due to errors during DNA replication and/or environmental factors. In	under study.
evidence.	general, only mutations that occur in gametes (sperm and egg) can be passed to offspring.	Evidence is required to
	Genes have variations (alleles) that code for specific variants of a protein (or RNA), and	support a claim about
Make and defend a claim based on	therefore specific traits of an individual. (HS.LS3B.b)	the causal mechanisms
evidence about the natural world		in a system under
that reflects scientific knowledge	Genes play an important role in shaping how organisms look and act (specific traits of an	study.
and student-generated evidence.	individual).	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Make and defend a claim based on	Mutations can be passed to offspring from parents (i.e., mutations that occur in gametes).	
evidence about the effectiveness of	Common changes in genes are responsible for many of the normal variations between	
a design solution that reflects	people such as eye color, hair color, and blood type.	
scientific knowledge and student- generated evidence.	Many common mutations have no negative effects on a person's health.	
	Environmental factors also affect expression of traits, and hence affect the probability of	
	occurrences of traits in a population. Thus the variation and distribution of traits observed	
	depends on both genetic and environmental factors. (HS.LS3B.c)	
	Environmental factors (climate, diet, pollution, lifestyle) have influence on gene expression.	
	Mutations can also occur when cells are aging or have been exposed to certain chemicals or radiation.	
	Inheritable genetic variations may result from new genetic combinations through meiosis,	
	viable errors occurring during replication, and/or mutations caused by environmental	
	factors.	

Emphasis is on using data to support arguments for the way variation occurs. Claims should not include the phases of meiosis or the biochemical mechanisms of specific steps in the process.

HS-LS3-3 Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.

LC-HS-LS3-3a Calculate the probability (e.g., two out of four) of a particular trait in an offspring based on a completed Punnett square.

LC-HS-LS3-3b Identify examples, using data, of environmental factors which affect the expression of traits, and so then affect the probability of occurrences of traits in a population.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	VARIATION OF TRAITS	SCALE, PROPORTION,
Analyzing data in 9-12 builds on K-8	In sexual reproduction, chromosomes can sometimes swap sections or cross over during the	AND QUANTITY
experiences and progresses to	process of meiosis (cell division), thereby creating new genetic combinations and thus more	Algebraic thinking is
introducing more detailed statistical	genetic variation. Although DNA replication is tightly regulated and remarkably accurate,	used to examine
analysis, the comparison of data	errors do occur and result in mutations, which are also a source of genetic variation.	scientific data and
sets for consistency, and the use of	Environmental factors can also cause mutations in genes, and viable mutations are inherited.	predict the effect of a
models to generate and analyze	(HS.LS3B.a)	change in one variable
data.		on another (e.g., linear
 Apply concepts of statistics and 	New genetic combinations lead to increased genetic variation.	growth vs. exponential
probability (e.g., determining	New genetic combinations are the result of:	growth).
function fits to data and correlation	• sexual reproduction,	
coefficient for linear or nonlinear	• crossing over and random assortment during meiosis,	Examine scientific data
fits) to scientific and engineering	• mutations due to errors in DNA replication, or	to predict the effect of a
questions and problems, using	• environmental influences.	change in one variable
digital tools when feasible.		on another.
	Mutations may occur due to errors during DNA replication and/or caused by environmental	Algebraic thinking can
Apply concepts of statistics and	factors. In general, only mutations that occur in gametes (sperm and egg) can be passed to	be used to explore
probability (e.g., determining	offspring. Genes have variations (alleles) that code for specific variants of a protein (or RNA),	complex mathematical
function fits to data and correlation	and therefore specific traits of an individual. (HS.LS3B.b)	relationships in science
coefficient for linear or nonlinear		(e.g., the difference
fits) to scientific questions and	Genes play an important role in shaping how organisms look and act (specific traits of an	between linear growth
problems, using digital tools when	individual).	and exponential
feasible.	Mutations can be passed to offspring from parents (i.e., mutations that occur in gametes).	growth).
Apply concepts of statistics and	Common changes in genes are responsible for many of the normal variations between	
probability (e.g., determining		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
function fits to data and correlation coefficient for linear or nonlinear fits) to engineering questions and problems, using digital tools when feasible.	people such as eye color, hair color, and blood type. Many common mutations have no negative effects on a person's health.	

Emphasis is on distribution and variation of traits in a population and the use of mathematics (e.g., calculations of frequencies in Punnett squares, graphical representations) to describe the distribution.

HS-LS4-1 Analyze and interpret scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. *LC-HS-LS4-1a Identify patterns* (e.g., DNA sequences, fossil records) as evidence to a claim of common ancestry.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	PATTERNS
Analyzing data in 9-12 builds on K-8	Genetic information provides evidence of evolution. DNA sequences vary among species, but	Different patterns may
experiences and progresses to	there are many overlaps; in fact, the ongoing branching that produces multiple lines of	be observed at each of
introducing more detailed statistical	descent can be inferred by comparing the DNA sequences of different organisms. Such	the scales at which a
analysis, the comparison of data	information is also derivable from the similarities and differences in amino acid sequences	system is studied and
sets for consistency, and the use of	and from observable anatomical and embryological evidence. (HS.LS4A.a)	can provide evidence for
models to generate and analyze		causality in explanations
data.	Evolution is a change in allelic frequencies of a population over time.	of phenomena.
 Compare and contrast various 	Highly similar DNA sequences among species leads to anatomical similarities and provides	
types of data sets (e.g., self-	evidence of evolution.	Patterns can be used to
generated, archival) to examine	Organisms are classified into a hierarchy of groups and subgroups based on similarities in	explain phenomena.
consistency of measurements and	structure, comparisons in DNA and protein and evolutionary relationships.	Different patterns can
observations.	Differences in DNA sequences among species contributes to the diversity of living things.	be observed at different
	The theory of evolution is supported by extensive biochemical, structural, embryological,	scales (micro and
Compare and contrast various types	and fossil evidence.	macro) in a system.
of data sets (e.g., self-generated,		Classifications used at
archival) to examine consistency of		one scale may fail or
measurements.		need revision when
Compare and contrast various types		information from
of data sets (e.g., self-generated,		smaller or larger scales
archival) to examine consistency of		is introduced.
observations.		

Emphasis is on a conceptual understanding of the role each line of evidence (e.g., similarities in DNA sequences, order of appearance of structure during embryological development, cladograms, homologous and vestigial structures, fossil records) demonstrates as related to common ancestry and biological evolution.

HS-LS4-2 Construct an explanation based on evidence that biological diversity is influenced by (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.

LC-HS-LS4-2a Recognize that as a species grows in number, competition for limited resources also increases.

LC-HS-LS4-2b Recognize that different individuals have specific traits that give advantages (e.g., survive and reproduce at higher rates) over other individuals in the species.

LC-HS-LS4-2c Identify how evolution may be a result of genetic variation through mutations and sexual reproduction in a species that is passed on to their offspring.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL SELECTION	CAUSE AND EFFECT
designing solutions: Constructing	Natural selection occurs only if there is both (1) variation in the genetic information between	Empirical evidence is
explanations (science) and designing	organisms in a population (e.g., mutations and sexual reproduction), and (2) variation in the	required to differentiate
solutions (engineering) in 9-12	expression of that genetic information—that is, trait variation—that leads to differences in	between cause and
builds on K-8 experiences and	performance among individuals. Natural selection leads to populations that have more	correlation and make
progresses to explanations and	individuals with behavioral, anatomical, and physiological adaptations. (HS.LS4B.a)	claims about specific
designs that are supported by		causes and effects.
multiple and independent student-	Biological traits become either more or less common in a population through the process of	
generated sources of evidence	natural selection.	Evidence is required
consistent with scientific ideas,	Different factors (including mutations and sexual reproduction) contribute to variation in a	when attributing an
principles, and theories.	population and that natural selection can influence frequencies of heritable traits by	observed phenomenon
Construct and revise an	providing survival advantages to some individuals.	to a specific cause.
explanation based on valid and	Four factors primarily influence evolution: (1) the potential for a species to increase in	Evidence is required to
reliable evidence obtained from a	number, (2) the genetic variation of individuals in a species due to mutation and sexual	explain the causal
variety of sources (including	reproduction, (3) competition for an environment's limited supply of the resources that	mechanisms in a system
students' own investigations,	individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those	under study.
models, theories, simulations, peer	organisms that are better able to survive and reproduce in that environment.	Evidence is required to
review) and the assumption that		support a claim about
theories and laws that describe the	The traits that positively affect survival are more likely to be reproduced, and thus are more	the causal mechanisms
natural world operate today as they	common in the population. (HS.LS4B.c)	in a system under
did in the past and will continue to		study.
do in the future.	Offspring with advantageous adaptations are more likely to survive and reproduce, thus	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Construct an explanation based on valid and reliable evidence from a	increasing the proportion of individuals within a population with advantageous characteristics.	
variety of sources. Construct an explanation based on valid and reliable evidence from the assumption that theories and laws		
that describe the natural world operate today as they did in the past and will continue to do so in		
the future. Revise an explanation based on valid and reliable evidence from a		
variety of sources. Revise an explanation based on valid and reliable evidence from the		
assumption that theories and laws that describe the natural world operate today as they did in the		
past and will continue to do so in the future.		

Emphasis is on using evidence to explain the influence each of the four factors has on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs or proportional reasoning.

HS-LS4-3 Apply concepts of statistics and probability to support explanations that populations of organisms adapt when an advantageous heritable trait increases in proportion to organisms lacking this trait.

LC-HS-LS4-3a Use patterns in data to identify how heritable variations in a trait may lead to an increasing proportion of individuals within a population with that trait (i.e., an advantageous characteristic).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	NATURAL SELECTION	PATTERNS
Analyzing data in 9-12 builds on K-8	Natural selection occurs only if there is both (1) variation in the genetic information between	Different patterns may
experiences and progresses to	organisms in a population (e.g., mutations and sexual reproduction), and (2) variation in the	be observed at each of
introducing more detailed statistical	expression of that genetic information—that is, trait variation—that leads to differences in	the scales at which a
analysis, the comparison of data	performance among individuals. Natural selection leads to populations that have more	system is studied and
sets for consistency, and the use of	individuals with behavioral, anatomical, and physiological adaptations. (HS.LS4B.a)	can provide evidence for
models to generate and analyze		causality in explanations
data.	Biological traits become either more or less common in a population through the process of	of phenomena.
 Apply concepts of statistics and 	natural selection.	
probability (e.g., determining	Different factors (including mutations and sexual reproduction) contribute to variation in a	Patterns can be used to
function fits to data and correlation	population and that natural selection can influence frequencies of heritable traits by	explain phenomena.
coefficient for linear or nonlinear	providing survival advantages to some individuals.	Different patterns can
fits) to scientific and engineering	Four factors primarily influence evolution: (1) the potential for a species to increase in	be observed at different
questions and problems, using	number, (2) the genetic variation of individuals in a species due to mutation and sexual	scales (micro and
digital tools when feasible.	reproduction, (3) competition for an environment's limited supply of the resources that	macro) in a system.
	individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those	Classifications used at
Apply concepts of statistics and	organisms that are better able to survive and reproduce in that environment.	one scale may fail or
probability (e.g., determining		need revision when
function fits to data and correlation	The traits that positively affect survival are more likely to be reproduced, and thus are more	information from
coefficient for linear or nonlinear	common in the population. (HS.LS4B.c)	smaller or larger scales
fits) to scientific questions and	Offspring with advantageous adaptations are more likely to survive and reproduce, thus	is introduced.
problems, using digital tools when	increasing the proportion of individuals within a population with advantageous	
feasible.	characteristics.	
Apply concepts of statistics and		
probability (e.g., determining	ADAPTATION	
function fits to data and correlation	Natural selection leads to adaptation that is, to a population dominated by organisms that are	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
coefficient for linear or nonlinear fits) to engineering questions and problems, using digital tools when feasible.	anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. (HS.LS4C.a) The inheritance of certain traits can lead to a competitive advantage for certain organisms in a population. Advantages lead to increased survival and/or reproductive rates within the population. Natural selection leads to adaptation in a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment.	
	Adaptation also means that the distribution of traits in a population can change when conditions change. (HS.LS4C.b) Natural selection causes shifts in the frequency of traits within a population over time. Relationships between biotic and abiotic differences in ecosystems and their contributions to a change in gene frequency over time, leads to adaptation of populations, and thus, proportional increases in organisms with advantageous heritable traits.	

Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations for adaptations. Explanations could include basic statistical or graphical analysis.

HS-LS4-4 Construct an explanation based on evidence for how natural selection and other mechanisms lead to genetic changes in populations.

LC-HS-LS4-4a Use data to provide evidence for how specific biotic or abiotic differences in ecosystems (e.g., ranges of seasonal temperature, acidity, light, geographic barriers) support the claim that organisms with an advantageous heritable trait are better able to survive over time.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL SELECTION	CAUSE AND EFFECT
designing solutions: Constructing	Natural selection occurs only if there is both (1) variation in the genetic information between	Empirical evidence is
explanations (science) and designing	organisms in a population (e.g., mutations and sexual reproduction), and (2) variation in the	required to differentiate
solutions (engineering) in 9-12	expression of that genetic information—that is, trait variation—that leads to differences in	between cause and
builds on K-8 experiences and	performance among individuals. Natural selection leads to populations that have more	correlation and make
progresses to explanations and	individuals with behavioral, anatomical, and physiological adaptations. (HS.LS4B.a)	claims about specific
designs that are supported by		causes and effects.
multiple and independent student-	Biological traits become either more or less common in a population through the process of	
generated sources of evidence	natural selection.	Evidence is required
consistent with scientific ideas,	Different factors (including mutations and sexual reproduction) contribute to variation in a	when attributing an
principles, and theories.	population and that natural selection can influence frequencies of heritable traits by	observed phenomenon
Construct and revise an	providing survival advantages to some individuals.	to a specific cause.
explanation based on valid and	Four factors primarily influence evolution: (1) the potential for a species to increase in	Evidence is required to
reliable evidence obtained from a	number, (2) the genetic variation of individuals in a species due to mutation and sexual	explain the causal
variety of sources (including	reproduction, (3) competition for an environment's limited supply of the resources that	mechanisms in a system
students' own investigations,	individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those	under study.
models, theories, simulations, peer	organisms that are better able to survive and reproduce in that environment.	Evidence is required to
review) and the assumption that		support a claim about
theories and laws that describe the	Genetic drift and gene flow can lead to genetic changes in populations, not adaptations.	the causal mechanisms
natural world operate today as they	(HS.LS4B.b)	in a system under
did in the past and will continue to		study.
do so in the future.	Other factors that influence evolution include: sexual selection, mutation, genetic drift, and genetic modification.	
Construct an explanation based on	Genetic drift is a mechanism of evolution that affects the genetic makeup of the population	
valid and reliable evidence from a	through a random process. It does not produce adaptations.	
variety of sources.	Gene flow moves alleles between populations. Migration is a common way gene flow	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Construct an explanation based on valid and reliable evidence from the	occurs.	
assumption that theories and laws	ADAPTATION	
that describe the natural world operate today as they did in the past and will continue to do so in the future. Revise an explanation based on valid and reliable evidence from a variety of sources. Revise an explanation based on valid and reliable evidence from the assumption that theories and laws that describe the natural world	Natural selection leads to adaptation that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. (HS.LS4C.a) The inheritance of certain traits can lead to a competitive advantage for certain organisms in a population. Advantages lead to increased survival and/or reproductive rates within the population. Natural selection leads to adaptation in a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a	
operate today as they did in the past and will continue to do so in	specific environment.	
the future.	Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes the extinction—of some species. (HS.LS4C.c)	
	Environmental changes have a strong influence on the evolutionary process. Changes in the physical environment, naturally occurring or human induced, contribute to changes in biodiversity. Changes may include species expansion, invasive species, and extinction.	
	Possible outcomes of human interactions include changes in the number of individuals of some species, emergence of new species over time, and the extinction of other species.	

Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency over time, leading to adaptation of populations.

HS-LS4-5 Evaluate evidence supporting claims that changes in environmental conditions can affect the distribution of traits in a population causing: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.

LC-HS-LS4-5a Identify the relationship between naturally occurring or human-induced changes in the environment (e.g., drought, flood, deforestation, fishing, application of fertilizers) and the expression of traits in a species (e.g., peppered moth studies).

LC-HS-LS4-5b Identify the relationship between naturally occurring or human-induced changes in the environment (e.g., drought, flood, deforestation, fishing, application of fertilizers) and the emergence of new species over time.

LC-HS-LS4-5c Identify that species become extinct because they can no longer survive and reproduce given changes in the environment.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ADAPTATION	CAUSE AND EFFECT
evidence: Engaging in argument	Changes in the physical environment, whether naturally occurring or human-induced, have	Empirical evidence is
from evidence in 9-12 builds on K-8	thus contributed to the expansion of some species, the emergence of new distinct species as	required to differentiate
experiences and progresses to using	populations diverge under different conditions, and the decline—and sometimes the	between cause and
appropriate and sufficient evidence	extinction—of some species. (HS.LS4C.c)	correlation and make
and scientific reasoning to defend		claims about specific
and critique claims and explanations	Environmental changes have a strong influence on the evolutionary process.	causes and effects.
about the natural and designed	Changes in the physical environment, naturally occurring or human-induced, contribute to	
world(s). Arguments may also come	changes in biodiversity. Changes may include species expansion, invasive species, and	Evidence is required
from current scientific or historical	extinction.	when attributing an
episodes in science.	Possible outcomes of human interactions include changes in the number of individuals of	observed phenomenon
 Evaluate the claims, evidence, 	some species, emergence of new species over time, and the extinction of other species.	to a specific cause.
and/or reasoning behind currently		Evidence is required to
accepted explanations or solutions	Species become extinct because they can no longer survive and reproduce in their altered	explain the causal
to determine the merits of	environment. If members cannot adjust to change that is too fast or drastic, the opportunity	mechanisms in a system
arguments.	for the species' evolution is lost. (HS.LS4C.d)	under study.
-		Evidence is required to
Evaluate the claims behind	When a physical change to an organism's environment is sudden and/or extreme, a species	support a claim about
currently accepted explanations to	becomes extinct when they are no longer able to survive and reproduce.	the causal mechanisms
determine the merits of arguments.	Thus, drastic changes to an environment limits the possibilities of species' evolution.	in a system under
Evaluate the claims behind		study.
currently accepted solutions to		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted solutions to		
determine the merits of arguments.		

Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, overfishing, application of fertilizers, drought, flood, and the rate of change of the environment affect distribution or disappearance of traits in species.

HS-PS1-1 Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level and the composition of the nucleus of atoms.

LC-HS-PS1-1a Identify the periodic table as a model to use to predict the properties of elements.

LC-HS-PS1-1b Identify that the periodic table was created based on the patterns of electrons in the outermost energy level of atoms.

LC-HS-PS1-1c Identify that the number of electrons in the outermost energy level of atoms impacts the behavior of the element.

LC-HS-PS1-1d Identify the periodic table as a model that predicts the number of electrons and other subatomic particles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
Modeling in 9-12 builds on K-8	Each atom has a charged substructure consisting of a nucleus, which is made of protons and	Different patterns may
experiences and progresses to using,	neutrons, surrounded by electrons. (HS.PS1A.a)	be observed at each of
synthesizing, and developing models		the scales at which a
to predict and show relationships	Atoms are the basic unit of a chemical element.	system is studied and
among variables between systems	Atoms are made of subatomic particles: protons, neutrons, and electrons.	can provide evidence for
and their components in the natural	Atoms have a nucleus.	causality in explanations
and designed worlds.	The nucleus of an atom is made of positively charged protons and neutrons, which have no	of phenomena.
 Develop, revise, and/or use a 	net charge.	
model based on evidence to	A positively charged nucleus is surrounded by smaller negatively charged electrons.	Patterns can be used to
illustrate and/or predict the		explain phenomena.
relationships between systems or	The periodic table orders elements horizontally by the number of protons in the atom's	Different patterns can
between components of a system.	nucleus and places those with similar chemical properties in columns. The repeating patterns	be observed at
	of this table reflect patterns of outer electron states. (HS.PS1A.b)	different scales (micro
Use a model based on evidence to		and macro) in a system.
identify and describe the	Electrons in the outermost energy level are called valence electrons.	Classifications used at
components of a system.	The periodic table of elements is an arrangement of the chemical elements ordered by	one scale may fail or
Use a model based on evidence to	atomic number or the number of protons in atoms.	need revision when
identify and describe the	The periodic table is used to predict the patterns of behavior of elements.	information from
relationships between the	The arrangement of the groups of the periodic table reflects the patterns of electrons in the	smaller or larger scales
components of a system.	outermost energy level of atoms, and therefore, the chemical properties of the elements in	is introduced.
Use a model based on evidence to	each group.	
predict relationships between	The atomic mass listed for each element on the periodic table corresponds to the relative	
systems or within a system.	abundance of that element's different isotopes.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Identify that models can help illustrate relationships between systems or within a system.	TYPES OF INTERACTIONS Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (HS.PS2B.c)	
	The patterns and behaviors of elements are based on the attraction and repulsion between electrically charged particles and the patterns of the outermost electrons. The reactivity and electronegativity of atoms can be determined by an element's location on the periodic table and its valence electrons attraction to the nucleus. The number and types of bonds formed by an element and between elements, the number and charges of stable ions, and the relative sizes of atoms can be determined by an element's location on the periodic table.	

Clarification Statement		
	Examples of properties that could be predicted from patterns could include	
Physical Science	metals, nonmetals, metalloids, number of valence electrons, types of bonds	
	formed, or atomic mass. Emphasis is on main group elements.	
	Examples of properties that could be predicted from patterns could include	
	reactivity of metals, types of bonds formed, numbers of bonds formed, atomic	
Chemistry	radius, atomic mass, or reactions with oxygen. Emphasis is on main group	
	elements and qualitative understanding of the relative trends of ionization	
	energy and electronegativity.	

HS-PS1-2 Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.

LC-HS-PS1-2a Identify an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms.

LC-HS-PS1-2b Identify an explanation for the outcome of a simple chemical reaction based on trends in the periodic table.

LC-HS-PS1-2c Construct an explanation for the outcome of a simple chemical reaction based on the chemical properties of the elements involved.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
designing solutions: Constructing	The periodic table orders elements horizontally by the number of protons in the atom's	Different patterns may
explanations (science) and designing	nucleus and places those with similar chemical properties in columns. The repeating patterns	be observed at each of
solutions (engineering) in 9-12	of this table reflect patterns of outer electron states. (HS.PS1A.b)	the scales at which a
builds on K-8 experiences and		system is studied and
progresses to explanations and	Electrons in the outermost energy level are called valence electrons.	can provide evidence for
designs that are supported by	The periodic table of elements is an arrangement of the chemical elements ordered by	causality in explanations
multiple and independent student-	atomic number as determined by an atoms number of protons.	of phenomena.
generated sources of evidence	The periodic table is used to predict the patterns of behavior of elements.	
consistent with scientific ideas,	The arrangement of the groups of the periodic table reflects the patterns of electrons in the	Patterns can be used to
principles, and theories.	outermost energy level of atoms, and therefore, the chemical properties of the elements in	explain phenomena.
 Construct and revise an 	each group.	Different patterns can
explanation based on valid and	The atomic mass listed for each element on the periodic table corresponds to the relative	be observed at
reliable evidence obtained from a	abundance of that element's different isotopes.	different scales (micro
variety of sources (including		and macro) in a system.
students' own investigations,	CHEMICAL REACTIONS	Classifications used at
models, theories, simulations, peer	The fact that atoms are conserved, together with knowledge of the chemical properties of the	one scale may fail or
review) and the assumption that	elements involved, can be used to describe and predict chemical reactions. (HS.PS1B.c)	need revision when
theories and laws that describe the		information from
natural world operate today as they	A chemical reaction is the process in which substances undergo chemical changes that	smaller or larger scales
did in the past and will continue to	results in the formation of new substances.	is introduced.
do so in the future.	Atoms are conserved in chemical reactions.	
	Predicting involves making an inference about a future event based on evidence.	
Construct an explanation based on		
valid and reliable evidence from a		

Disciplinary Core Idea	Crosscutting Concept
An element's chemical and physical properties can be predicted knowing only its position	
on the periodic table.	
	An element's chemical and physical properties can be predicted knowing only its position

Clarification Statement		
	Examples of chemical reactions could include the reaction of sodium and	
Physical Science	chlorine, carbon and oxygen, or hydrogen and oxygen. Reaction classification	
	includes synthesis, decomposition, single displacement, double displacement,	
	and acid-base.	
	Examples of chemical reactions could include the reaction of sodium and	
Ch and interest	chlorine, carbon and oxygen, or carbon and hydrogen. Reaction classification	
Chemistry	aids in the prediction of products (e.g., synthesis, decomposition, single	
	displacement, double displacement, and acid-base).	

HS-PS1-7 Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

LC-HS-PS1-7a Identify a chemical equation, and identify the reactants and products which support the claim that matter (i.e., atoms) is neither created or

destroyed in a chemical reaction.

LC-HS-PS1-7b Identify a mathematical representation (e.g., table, graph) or pictorial depictions that illustrates the claim that mass is conserved during a chemical reaction.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	CHEMICAL REACTIONS	ENERGY AND MATTER
computational thinking:	The fact that atoms are conserved, together with knowledge of the chemical properties of the	The total amount of
Mathematical and computational	elements involved, can be used to describe and predict chemical reactions. (HS.PS1B.c)	energy and matter in
thinking in 9-12 builds on K-8		closed systems is
experiences and progresses to using	A chemical reaction is the process in which substances undergo chemical changes that	conserved.
algebraic thinking and analysis, a	results in the formation of new substances.	
range of linear and nonlinear	Atoms are conserved in chemical reactions.	When materials
functions, including computational	Predicting involves making an inference about a future event based on evidence.	interact within a closed
tools for statistical analysis to	An element's chemical and physical properties can be predicted knowing only its position	system, the total mass
analyze, represent, and model data.	on the periodic table.	of the system remains
Simple computational simulations	The periodic table can be used to predict the outcome of chemical reactions.	the same.
are created and used based on		When materials
mathematical models of basic		interact within a closed
assumptions.		system, energy may
• Use mathematical, computational,		change forms, but the
and/or algorithmic representations		total amount of energy
of phenomena or design solutions to		within the system
describe and/or support claims		remains the same.
and/or explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
design solutions to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement		
Physical Science	Emphasis is on using mathematical ideas to communicate the relationship between masses of reactants and products as well as balancing chemical	
	equations.	
Chemistry	Emphasis is on using mathematical ideas as they relate to stoichiometry to communicate the proportional relationships between masses of atoms in the reactants and the products, and the translation of these relationships to the macroscopic scale using the mole as the conversion from the atomic to the	

Clarification Statement	
	macroscopic scale. Emphasis is on assessing students' use of mathematical thinking and not on memorization and rote application of problem-solving
	techniques.

HS-PS1-8 Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

LC-HS-PS1-8a Identify models that illustrate nuclear processes (i.e., fusion, fission, and radioactive decays), involve the release or absorption of energy. LC-HS-PS1-8b Contrast changes during the processes of alpha, beta, or gamma radioactive decay using graphs or pictorial depictions of the composition of the nucleus of the atom and the energy released.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	NUCLEAR PROCESSES	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve	In nuclear processes,
experiences and progresses to using,	release or absorption of energy. The total number of neutrons plus protons does not change	atoms are not
synthesizing, and developing models	in any nuclear process. (HS.PS1C.a)	conserved, but the total
to predict and show relationships		number of protons plus
among variables between systems	Fission, fusion, and radioactive decay (alpha, beta, and gamma) are nuclear processes.	neutrons is conserved.
and their components in the natural	Nuclear fission and fusion reactions release energy.	
and designed world(s).	In fission reactions, an atom is split into two or more smaller atoms.	The total number of
 Develop, revise, and/or use a 	In fusion reactions, two smaller atoms fuse together to create a heavier atom.	protons plus neutrons is
model based on evidence to	When a nuclear process takes place, radioactive particles and/or gamma radiation may be	the same before and
illustrate and/or predict the	produced.	after nuclear processes
relationships between systems or	Radioactive decay is the breakdown of an atomic nucleus resulting in the release of energy	occur.
between components of a system.	and matter from the nucleus.	
	The total number of neutrons plus protons is the same both before and after the nuclear	
Develop or use a model to identify	process of radioactive decay.	
and describe the components of a	Typically nuclear processes release much more energy per atom involved than do chemical	
system.	processes.	
Develop or use a model to identify	The energy that is released or absorbed during nuclear processes are harmful to human	
and describe the relationships	tissues.	
between the components of a		
system.		
Develop or use a model to predict		
relationships between systems or		
within a system.		
Identify that models can help		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		
systems or within a system.		

Clarification Statement		
Physical Science	Emphasis is only on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds	
r nysical science	of transformations. Radioactive decay focus is on its relationship to half-life.	
	Emphasis is on simple qualitative models, such as pictures or diagrams, and on	
Chemistry	the scale of energy released in nuclear processes relative to other kinds of	
	transformations. Emphasis is on alpha, beta, and gamma radioactive decays.	

HS-PS2-1 Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

LC-HS-PS2-1a Predict changes in the motion of a macroscopic object, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force using data (e.g., tables or graphs of position or velocity as a function of time for an object subject to a net unbalanced force).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	FORCES AND MOTION	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Newton's second law accurately predicts changes in the motion of macroscopic objects.	Empirical evidence is
experiences and progresses to	(HS.PS2.A.a)	required to differentiate
introducing more detailed statistical		between cause and
analysis, the comparison of data	Unbalanced forces applied to an object will cause acceleration.	correlation and make
sets for consistency, and the use of	The size of this acceleration is determined by the mass of the object and the size of force	claims about specific
models to generate and analyze	applied.	causes and effects.
data.	Forces might change the motion of objects (e.g., During tug-of-war, if forces on opposite	
 Analyze data using tools, 	teams are equal, the rope will not move.).	Evidence is required
technologies, and/or models (e.g.,	Forces change the motion of objects. Newton's Laws can be used to predict these changes.	when attributing an
computational, mathematical) in	Newton's second law describes the effects of the size of the total force and the object's	observed phenomenon
order to make valid and reliable	mass on its resulting acceleration.	to a specific cause.
scientific claims or determine an	The reason why objects may react differently to equal sized forces is explained by Newton's	Evidence is required to
optimal design solution.	second law.	explain the causal
		mechanisms in a system
Analyze data using tools in order to		under study.
make valid and reliable scientific		Evidence is required to
claims.		support a claim about
Analyze data using tools in order to		the causal mechanisms
determine an optimal design		in a system under
solution.		study.
Analyze data using technology in		
order to make valid and reliable		
scientific claims.		
Analyze data using technology in		
order to determine an optimal		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
design solution. Analyze data using models in order to make valid and reliable scientific claims. Analyze data using models in order to determine an optimal design solution.		

Clarification Statement		
Physical Science	Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force. Emphasis is on one-dimensional motion and macroscopic objects moving at nonrelativistic speeds.	
Chemistry	Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force. Emphasis is on kinematics, one-dimensional motion, two-dimensional motion, and macroscopic objects moving at non-relativistic speeds.	

HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

LC-HS-PS2-2a Identify an example of the law of conservation of momentum (e.g., in a collision, the momentum change of an object is equal to and opposite of the momentum change of the other object) represented using graphical or visual displays (e.g., pictures, pictographs, drawings, written observations, tables, charts).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	FORCES AND MOTION	SYSTEMS AND SYSTEM
computational thinking:	Momentum is defined for a particular frame of reference; it is the mass times the velocity of	MODELS
Mathematical and computational	the object. In any system, total momentum is always conserved. (HS.PS2A.b)	When investigating or
thinking in 9-12 builds on K-8		describing a system, the
experiences and progresses to using	Momentum is the product of an object's mass and its velocity.	boundaries and initial
algebraic thinking and analysis, a	Momentum is determined by the speed of an object and the direction it is traveling	conditions of the system
range of linear and nonlinear	(velocity) of an object and the object's mass.	need to be defined and
functions, including computational	The momentum of an object is in the same direction as its velocity.	their inputs and outputs
tools for statistical analysis to	The more momentum an object has, the harder it is to stop.	analyzed and described
analyze, represent, and model data.	The Law of Conservation of Momentum can be used to predict the outcomes of collisions	using models.
Simple computational simulations	between objects and can aid in understanding the energy transfers and energy	
are created and used based on	transformations in these collisions.	Making models helps
mathematical models of basic		people understand
assumptions.	If a system interacts with objects outside itself, the total momentum of the system can	things they cannot
• Use mathematical, computational,	change; however, any such change is balanced by changes in the momentum of objects	observe directly.
and/or algorithmic	outside the system. (HS.PS2A.c)	Scientists use models to
representations of phenomena or		represent things that
design solutions to	Momentum is conserved as long as there are no new objects added to the system.	are either very large or
describe and/or support claims	The total momentum of any group of objects remains the same unless outside forces act on	very small.
and/or explanations.	the object.	Any model of a system
	Only unbalanced forces can change the momentum of an object.	incorporates
Use mathematical or algorithmic	An impulse represents how much the momentum of an object changes when a force acts on	assumptions and
forms for scientific modeling of	it over a period of time.	approximations (e.g.,
phenomena to describe claims.		the boundaries and
Use mathematical or algorithmic		initial conditions of the

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
forms for scientific modeling of	The impulse describes the relationship between the force acting on an object and the	system, inputs and
design solutions to describe claims.	change it produces in the object's momentum.	outputs).
Use mathematical or algorithmic		It is critical to be aware
forms for scientific modeling of		of a system's physical,
phenomena to support claims.		chemical, biological,
Use mathematical or algorithmic		and social interactions
forms for scientific modeling of		and how they affect the
design solutions to support claims.		model's reliability and
Use mathematical or algorithmic		precision.
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement	
Physical Science	Emphasis is on calculating momentum and the qualitative meaning of
Physical Science	conservation of momentum.
	Emphasis is on the quantitative conservation of momentum in interactions and
Chemistry	the qualitative meaning of this principle as well as systems of two macroscopic
	bodies moving in one dimension.

HS-PS2-3 Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. LC-HS-PS2-3a Evaluate a device (e.g., football helmet or a parachute) designed to minimize force by comparing data (i.e., momentum, mass, velocity, force, or time).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	FORCES AND MOTION	
designing solution: Constructing	If a system interacts with objects outside itself, the total momentum of the system can	
explanations (science) and designing	change; however, any such change is balanced by changes in the momentum of objects	
solutions (engineering) in 9-12	outside the system. (HS.PS2A.c)	
builds on K-8 experiences and		
progresses to explanations and	Momentum is conserved as long as there are no new objects added to the system.	
designs that are supported by	The total momentum of any group of objects remains the same unless outside forces act on	
multiple and independent student-	the object.	
generated sources of evidence	Only unbalanced forces can change the momentum of an object.	
consistent with scientific ideas,	An impulse represents how much the momentum of an object changes when a force acts on	
principles, and theories.	it over a periods of time.	
 Design, evaluate, and/or refine a 	The impulse describes the relationship between the force acting on an object and the	
solution to a complex real-world	change it produces in the object's momentum.	
problem, based on scientific		
knowledge, student-generated	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
sources of evidence, prioritized	Criteria and constraints also include satisfying any requirements set by society, such as taking	
criteria, and tradeoff considerations.	issues of risk mitigation into account, and they should be quantified to the extent possible	
	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
Design a solution to a complex real-		
world problem, based on scientific	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
knowledge, student-generated	the design of the device.	
sources of evidence, prioritized	The social, economic, and political forces of a society have a significant influence on what	
criteria, and tradeoff	science and technology solutions are implemented.	
considerations.		
Evaluate a solution to a complex	OPTIMIZING THE DESIGN SOLUTION	
real-world problem, based on	Criteria may need to be broken down into simpler ones that can be approached	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff	systematically, and decisions about the priority of certain criteria over others (tradeoffs) may be needed. (HS.ETS1C.a)	
considerations. Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	It is important to prioritize the benefits and costs of the design of a solution to a problem. The decision as to which criteria are critical and which ones can be traded off is a judgment based on the situation and the needs of the system.	

Clarification Statement	
Physical Science	Examples of evaluation and refinement could include determining the success of a device at protecting an object from damage such as, but not limited to, impact resistant packaging and modifying the design to improve it. Emphasis is on qualitative evaluations.
Chemistry	Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it by applying the impulse-momentum theorem. Examples of a device could include a football helmet or an airbag. Emphasis is on qualitative evaluations and/or algebraic manipulations.

HS-PS2-5 Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

LC-HS-PS2-5a Identify situations and provide evidence where an electric current is producing a magnetic field.

LC-HS-PS2-5b Identify situations and provide evidence where a magnetic field is producing an electric current.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	TYPES OF INTERACTIONS	CAUSE AND EFFECT
Investigations: Planning and	Forces that act over a distance are explained by fields (gravitational, electric, and magnetic)	Empirical evidence is
carrying out investigations to	permeating space that can transfer energy through space. Magnets or electric currents cause	required to differentiate
answer questions or test solutions	magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS.PS2B.b)	between cause and
to problems in 9-12 builds on K-8		correlation and make
experiences and progresses to	Moving electric charges produce magnetic fields; changing magnetic fields induce electric	claims about specific
include investigations that provide	currents.	causes and effects.
evidence for and test conceptual,	An electric field is the field around a charged particle that exerts a force on other charged	
mathematical, physical, and	particles.	Evidence is required
empirical models.	A magnetic field is a region around a magnet in which a magnetic force acts. (It is not	when attributing an
Plan and conduct an investigation	always an attraction, sometimes it is a repulsion.)	observed phenomenon
individually and collaboratively to	Moving electric charges produce magnetic fields.	to a specific cause.
produce data to serve as the basis	Electrical energy carried by currents in wires can be used to create magnetic fields.	Evidence is required to
for evidence, and in the design:	Magnets and rotating coils can be used to create electric currents.	explain the causal
decide on types, how much, and		mechanisms in a system
accuracy of data needed to produce	DEFINITIONS OF ENERGY	under study.
reliable measurements and consider	"Electrical energy" may mean energy stored in a battery or energy transmitted by electric	Evidence is required to
limitations on the precision of the	currents. (HS.PS3A.d)	support a claim about
data (e.g., number of trials, cost,		the causal mechanisms
risk, time), and refine the design	Electrical energy is a form of energy that can be transferred by moving charges through a	in a system under
accordingly.	complete circuit.	study.
	A battery is a combination of two or more electrochemical cells in a series.	
Plan an investigation individually	Batteries are portable sources of electrical energy.	
and collaboratively to produce data		
to serve as the basis for evidence,		
and in the design: decide on types,		

Disciplinary Core Idea	Crosscutting Concept
	Disciplinary Core Idea

Clarification Statement	
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the
	relationship between a current-carrying wire and a magnetic compass.
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.

HS-PS3-2 Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles/objects and energy associated with the relative positions of particles/objects.

LC-HS-PS3-2a Identify that two factors, an object's mass and height above the ground, affect gravitational potential energy (i.e., energy stored due to position of an object above Earth) at the macroscopic level.

LC-HS-PS3-2b Identify that the mass of an object and its speed determine the amount of kinetic energy the object possesses.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	DEFINITIONS OF ENERGY	ENERGY AND MATTER
Developing and using models:	Energy is a quantitative property of a system that depends on the motion and interactions of	Energy cannot be
Modeling in 9-12 builds on K-8	matter and radiation within that system. There is a single quantity called energy. A system's	created or destroyed—it
experiences and progresses to using,	total energy is conserved, even as, within the system, energy is continually transferred from	only moves between
synthesizing, and developing models	one object to another and between its various possible forms. (HS.PS3A.a)	one place and another
to predict and show relationships		place, between objects
among variables between systems	Energy is the ability to do work or cause change.	and/or fields, or
and their components in the natural and designed world(s).	Energy transforms from one form to another, but these transformations are not always reversible.	between systems.
 Develop, revise, and/or use a 	A system's total energy is conserved regardless of the transfers within the system.	Energy cannot be
model based on evidence to	The total energy of a system changes only by the amount of energy transferred into and out	created or destroyed.
illustrate and/or predict the	of the system.	Energy can be
relationships between systems or		transferred from one
between components of a system.	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	object to another and
	light, and thermal energy. (HS.PS3A.b)	can be transformed
Develop or use a model to identify		from one form to
and describe the components of a system.	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	another, but the total amount of energy never
Develop or use a model to identify	These relationships are better understood at the microscopic scale, at which all of the	changes.
and describe the relationships	different manifestations of energy can be modeled as a combination of energy associated	
between the components of a	with the motion of particles and energy associated with the configuration (relative position of	
system.	the particles). In some cases the relative position energy can be thought of as stored in fields	
Develop or use a model to predict	(which mediate interactions between particles). This last concept includes radiation, a	
relationships between systems or	phenomenon in which energy stored in fields moves across space. (HS.PS3A.c)	
within a system.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Identify that models can help illustrate relationships between systems or within a system.	Energy can be modeled as either motions of particles or as stored in force fields (electric, magnetic, gravitational). At the microscopic scale, energy can be understood as a force that mediates interactions between particles. Electromagnetic radiation is a phenomenon in which energy stored in fields moves across space (light, radio waves) with no supporting matter medium.	

Clarification Statement	
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the relationship between a current-carrying wire and a magnetic compass.
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

LC-HS-PS3-3a Identify the forms of energy that will be converted by a device that converts one form of energy into another form of energy.

LC-HS-PS3-3b Identify steps in a model of a device showing the transformations of energy that occur (e.g., solar cells, solar ovens, generators, turbines).

LC-HS-PS3-3c Describe constraints to the design of the device which converts one form of energy into another form of energy (e.g., cost or efficiency of energy conversion).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing solutions: Constructing	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	Changes of energy and
explanations (science) and designing	light, and thermal energy. (HS.PS3A.b)	matter in a system can
solutions (engineering) in 9-12		be described in terms of
builds on K-8 experiences and	Energy takes many forms; forms of energy are motion, sound, light, and thermal energy.	energy and matter flows
progresses to explanations and		into, out of, and within
designs that are supported by	ENERGY IN CHEMICAL PROCESSES	that system.
multiple and independent student-	Although energy cannot be destroyed, it can be converted to other forms—for example, to	
generated sources of evidence	thermal energy in the surrounding environment. (HS.PS3D.a)	The processes of energy
consistent with scientific ideas,		transformation and
principles, and theories.	A system does not destroy energy when carrying out any process.	energy transfer can be
 Design, evaluate, and/or refine a 	When carrying out a process, most often some or all of the energy has been transferred to	used to understand the
solution to a complex real-world	heat the surrounding environment.	changes that take place
problem, based on scientific	Energy can be transformed into other energy forms.	in physical systems.
knowledge, student-generated	To produce energy typically means to convert some stored energy into a desired form.	
sources of evidence, prioritized		
criteria, and tradeoff considerations.	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Criteria and constraints also include satisfying any requirements set by society, such as taking	
Design a solution to a complex real-	issues of risk mitigation into account, and they should be quantified to the extent possible	
world problem, based on scientific	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
knowledge, student-generated		
sources of evidence, prioritized	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
criteria, and tradeoff	the design of the device.	
considerations.		
Evaluate a solution to a complex		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	The social, economic, and political forces of a society have a significant influence on what science and technology solutions are implemented.	

Clarification Statement		
Physical Science	Emphasis is on qualitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Emphasis is on devices constructed with teacher approved materials. Examples of devices can be drawn from chemistry or physics clarification statements below.	
Chemistry	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in chemistry could include hot/cold packs and batteries.	
Physics	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in physics could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and electric motors.	

HS-PS3-4 Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). LC-HS-PS3-4a Identify the temperatures of two liquids of different temperature before mixing and after combining to show uniform energy distribution. LC-HS-PS3-4b Investigate the transfer of thermal energy when two substances are combined within a closed system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CONSERVATION OF ENERGY AND ENERGY TRANSFER	SYSTEMS AND SYSTEM
investigations: Planning and	Energy cannot be created or destroyed, but it can be transported from one place to another,	MODELS
carrying out investigations to	transformed into other forms, and transferred between systems. (HS.PS3B.b)	When investigating or
answer questions (science) or test		describing a system, the
solutions to problems (engineering)	Energy cannot be created or destroyed.	boundaries and initial
in 9-12 builds on K-8 experiences	Energy can be transferred from one object to another and can be transformed from one	conditions of the system
and progresses to include	form to another.	need to be defined and
investigations that provide evidence	The processes of energy transformation and energy transfer can be used to understand the	their inputs and outputs
for and test conceptual,	changes that take place in physical systems.	analyzed and described
mathematical, physical, and		using models.
empirical models.	Uncontrolled systems always evolve toward more stable states—that is, toward more uniform	
 Plan and conduct an investigation 	energy distribution (e.g., water flows downhill, objects hotter than their surrounding	Making models helps
individually and collaboratively to	environment cool down). (HS.PS3B.e)	people understand
produce data to serve as the basis		things they cannot
for evidence, and in the design:	Energy can change from one kind to another.	observe directly.
decide on types, how much, and	When two substances (e.g., water or air) of different temperature are combined (within a	Scientists use models to
accuracy of data needed to produce	closed system), the result will be a more uniform temperature (energy) distribution in the	represent things that
reliable measurements and consider	system.	are either very large or
limitations on the precision of the		very small.
data (e.g., number of trials, cost,	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	Any model of a system
risk, time), and refine the design	Although energy cannot be destroyed, it can be converted to less useful other forms—for	incorporates
accordingly.	example, to thermal energy in the surrounding environment. (HS.PS3D.a)	assumptions and
		approximations (e.g.,
Plan an investigation individually	Energy can be transformed into other energy forms.	the boundaries and
and collaboratively to produce data		initial conditions of the
to serve as the basis for evidence,		system, inputs and

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements. Revise an investigation individually and collaboratively to produce data to serve as the basis for evidence. Conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence.	When "producing" or "using" energy, most often some or all of the energy has been transferred to heat the surrounding environment.	outputs). It is critical to be aware of a system's physical, chemical, biological, and social interactions and how they affect the model's reliability and precision.

Clarification Statement	
Physical Science, Chemistry, and Physics	Emphasis is on analyzing data from student investigations and using mathematical thinking appropriate to the subject to describe the energy changes quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.

HS-PS3-2 Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles/objects and energy associated with the relative positions of particles/objects.

LC-HS-PS3-2a Identify that two factors, an object's mass and height above the ground, affect gravitational potential energy (i.e., energy stored due to position of an object above Earth) at the macroscopic level.

LC-HS-PS3-2b Identify that the mass of an object and its speed determine the amount of kinetic energy the object possesses.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	DEFINITIONS OF ENERGY	ENERGY AND MATTER
Developing and using models:	Energy is a quantitative property of a system that depends on the motion and interactions of	Energy cannot be
Modeling in 9-12 builds on K-8	matter and radiation within that system. There is a single quantity called energy. A system's	created or destroyed—it
experiences and progresses to using,	total energy is conserved, even as, within the system, energy is continually transferred from	only moves between
synthesizing, and developing models	one object to another and between its various possible forms. (HS.PS3A.a)	one place and another
to predict and show relationships		place, between objects
among variables between systems	Energy is the ability to do work or cause change.	and/or fields, or
and their components in the natural and designed world(s).	Energy transforms from one form to another, but these transformations are not always reversible.	between systems.
 Develop, revise, and/or use a 	A system's total energy is conserved regardless of the transfers within the system.	Energy cannot be
model based on evidence to	The total energy of a system changes only by the amount of energy transferred into and out	created or destroyed.
illustrate and/or predict the	of the system.	Energy can be
relationships between systems or		transferred from one
between components of a system.	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	object to another and
	light, and thermal energy. (HS.PS3A.b)	can be transformed
Develop or use a model to identify		from one form to
and describe the components of a system.	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	another, but the total amount of energy never
Develop or use a model to identify	These relationships are better understood at the microscopic scale, at which all of the	changes.
and describe the relationships	different manifestations of energy can be modeled as a combination of energy associated	
between the components of a	with the motion of particles and energy associated with the configuration (relative position of	
system.	the particles). In some cases the relative position energy can be thought of as stored in fields	
Develop or use a model to predict	(which mediate interactions between particles). This last concept includes radiation, a	
relationships between systems or	phenomenon in which energy stored in fields moves across space. (HS.PS3A.c)	
within a system.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Identify that models can help illustrate relationships between systems or within a system.	Energy can be modeled as either motions of particles or as stored in force fields (electric, magnetic, gravitational). At the microscopic scale, energy can be understood as a force that mediates interactions between particles. Electromagnetic radiation is a phenomenon in which energy stored in fields moves across space (light, radio waves) with no supporting matter medium.	

Clarification Statement		
	Emphasis is on designing and conducting investigations including evaluating	
Physical Science	simple series and parallel circuits. Qualitative evidence is used to explain the	
	relationship between a current-carrying wire and a magnetic compass.	
	Evidence of changes within a circuit can be represented numerically,	
	graphically, or algebraically using Ohm's law. Emphasis is on designing and	
	conducting investigations using qualitative evidence to determine the	
Chemistry	relationship between electric current and magnetic fields. Examples of	
	evidence can include movement of a magnetic compass needle when placed in	
	the vicinity of a current-carrying wire, and a magnet passing through a coil that	
	turns on the light of a Faraday flashlight.	

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

LC-HS-PS3-3a Identify the forms of energy that will be converted by a device that converts one form of energy into another form of energy.

LC-HS-PS3-3b Identify steps in a model of a device showing the transformations of energy that occur (e.g., solar cells, solar ovens, generators, turbines).

LC-HS-PS3-3c Describe constraints to the design of the device which converts one form of energy into another form of energy (e.g., cost or efficiency of energy conversion).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing solutions: Constructing	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	Changes of energy and
explanations (science) and designing	light, and thermal energy. (HS.PS3A.b)	matter in a system can
solutions (engineering) in 9-12		be described in terms of
builds on K-8 experiences and	Energy takes many forms; forms of energy are motion, sound, light, and thermal energy.	energy and matter flows
progresses to explanations and		into, out of, and within
designs that are supported by	ENERGY IN CHEMICAL PROCESSES	that system.
multiple and independent student-	Although energy cannot be destroyed, it can be converted to other forms—for example, to	
generated sources of evidence	thermal energy in the surrounding environment. (HS.PS3D.a)	The processes of energy
consistent with scientific ideas,		transformation and
principles, and theories.	A system does not destroy energy when carrying out any process.	energy transfer can be
 Design, evaluate, and/or refine a 	When carrying out a process, most often some or all of the energy has been transferred to	used to understand the
solution to a complex real-world	heat the surrounding environment.	changes that take place
problem, based on scientific	Energy can be transformed into other energy forms.	in physical systems.
knowledge, student-generated	To produce energy typically means to convert some stored energy into a desired form.	
sources of evidence, prioritized		
criteria, and tradeoff considerations.	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Criteria and constraints also include satisfying any requirements set by society, such as taking	
Design a solution to a complex real-	issues of risk mitigation into account, and they should be quantified to the extent possible	
world problem, based on scientific	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
knowledge, student-generated		
sources of evidence, prioritized	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
criteria, and tradeoff	the design of the device.	
considerations.		
Evaluate a solution to a complex		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	The social, economic, and political forces of a society have a significant influence on what science and technology solutions are implemented.	

Clarification Statement		
Physical Science	Emphasis is on qualitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Emphasis is on devices constructed with teacher approved materials. Examples of devices can be drawn from chemistry or physics clarification statements below.	
Chemistry	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in chemistry could include hot/cold packs and batteries.	
Physics	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in physics could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and electric motors.	

HS-PS3-5 Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

LC-HS-PS3-5a Use a model to identify the cause and effect relationships between forces produced by electric or magnetic fields and the change of energy of the objects in the system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	RELATIONSHIP BETWEEN ENERGY AND FORCES	CAUSE AND EFFECT
Modeling in 9-12 builds on K-8	When two objects interacting through a field change relative position, the energy stored in	Cause and effect
experiences and progresses to using	the field is changed. (HS.PS3C.a)	relationships can be
synthesizing and developing models		suggested and predicted
to predict and show relationships	When two objects interact, each one exerts a force on the other.	for complex natural and
among variables between systems	These forces can transfer energy between the objects.	human-designed
and their components in the natural	Forces between two objects at a distance are explained by force fields (gravitational,	systems by examining
and designed world(s).	electric, or magnetic) between them.	what is known about
 Develop, revise, and/or use a 	The energy stored in the field is consistent with the change in energy of the objects.	smaller scale
model based on evidence to		mechanisms within the
illustrate and/or predict the		system.
relationships between systems or		
between components of a system.		An understanding of
		small scale mechanisms
Develop or use a model to identify		within a system can
and describe the components of a		uncover cause and
system.		effect relationships for
Develop or use a model to identify		complex systems
and describe the relationships		(natural and human-
between the components of a		designed).
system.		An understanding of
Develop or use a model to predict		small scale mechanisms
relationships between systems or		within a system can be
within a system.		predictive of cause and
Identify that models can help		effect relationships for

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between systems or within a system.		complex systems (natural and human-
		designed).

Clarification Statement	
Physical Science	Examples of models could include drawings, diagrams, simulations and texts, such as what happens when two charged objects or two magnetic poles are near each other.
Physics	Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.

HS-PS4-1 Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

LC-HS-PS4-1a Qualitatively describe cause and effect relationships between changes in wave speed and type of media through which the wave travels using mathematical and graphical representations.

LC-HS-PS4-1b Identify examples that illustrate the relationship between the frequency and wavelength of a wave.

LC-HS-PS4-1c Identify evidence that the speed of a wave depends on the media through which it travels.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WAVE PROPERTIES	CAUSE AND EFFECT
computational thinking:	The wavelength and frequency of a wave are related to one another by the speed of travel of	Empirical evidence is
Mathematical and computational	the wave, which depends on the type of wave and the medium through which it is passing.	required to differentiate
thinking in 9-12 builds on K-8	(HS.PS4A.a)	between cause and
experiences and progresses to using		correlation and make
algebraic thinking and analysis, a	The speed of a wave in a particular medium is constant. For this wave, the frequency and	claims about specific
range of linear and nonlinear	the wavelength are related to one another.	causes and effects.
functions (e.g., trigonometric,	The speed of a wave can also be affected by the type of material through which it travels.	
exponential and logarithmic) and		Evidence is required
computational tools for statistical		when attributing an
analysis to analyze, represent, and		observed phenomenon
model data. Simple computational		to a specific cause.
simulations are created and used		Evidence is required to
based on mathematical models of		explain the causal
basic assumptions.		mechanisms in a system
 Use mathematical, computational, 		under study.
and/or algorithmic representations		Evidence is required to
of phenomena or design solutions to		support a claim about
describe and/or support claims		the causal mechanisms
and/or explanations.		in a system under
		study.
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe claims.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement	
Emphasis is on describing waves both qualitatively and quantitatively.	
Physical Science	Qualitative focus includes standard repeating waves and
	transmission/absorption of electromagnetic waves/radiation.

Clarification Statement	
Physics	Examples of data could include electromagnetic radiation traveling through a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth. Emphasis is on algebraic relationships and describing those relationships qualitatively.

PS4-4 Evaluate the validity and reliability of claims in published materials regarding the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

LC-PS4-4a Recognize the relationship between the damage to living tissue from electromagnetic radiation and the energy of the radiation.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	ELECTROMAGNETIC RADIATION	CAUSE AND EFFECT
communicating information:	When light or longer wavelength electromagnetic radiation is absorbed in matter, it is	Cause and effect
Obtaining, evaluating, and	generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation	relationships can be
communicating information in 9-12	(ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells.	suggested and predicted
builds on K-8 experiences and	(HS.PS4B.b)	for complex natural and
progresses to evaluating the validity		human-designed
and reliability of the claims,	Energy from the sun takes the form of electromagnetic waves such as infrared, visible, and	systems by examining
methods, and designs.	ultraviolet electromagnetic waves.	what is known about
Evaluate the validity and reliability	Electromagnetic waves carry a single form of energy called electromagnetic (radiant)	smaller scale
of and/or synthesize multiple claims,	energy.	mechanisms within the
methods, and/or designs that	The radiation from the sun consists of a range of energies in the electromagnetic spectrum.	system.
appear in scientific and technical	Electromagnetic radiation when absorbed can be converted to thermal energy.	
texts or media reports, verifying the	Electromagnetic waves carry energy that can have important consequences when	An understanding of
data when possible.	transferred to objects or substances.	small scale mechanisms
	Some electromagnetic radiation can cause damage to living cells.	within a system can
Evaluate the validity and reliability		uncover cause and
of claims that appear in scientific		effect relationships for
and technical texts, verifying the		complex systems
data when possible.		(natural and human-
Evaluate the validity and reliability		designed).
of claims that appear in media		An understanding of
reports, verifying the data when		small scale mechanisms
possible.		within a system can be
Evaluate the validity and reliability		predictive of cause and
of methods that appear in scientific		effect relationships for
and technical texts, verifying the		complex systems

Science and Engineering Practice	Disciplinary Core Idea Crosscutting Co	ncept
data when possible.	(natural and hum	nan-
Evaluate the validity and reliability	designed).	
of methods that appear in media		
reports, verifying the data when		
possible.		
Evaluate the validity and reliability		
of designs that appear in scientific		
and technical texts, verifying the		
data when possible.		
Evaluate the validity and reliability		
of designs that appear in media		
reports, verifying the data when		
possible.		
Evaluate the validity and reliability of designs that appear in media reports, verifying the data when		

Clarification Statement

Emphasis is on the idea that photons associated with different frequencies of light have different energies, and the damage to living tissue from electromagnetic radiation depends on the energy of the radiation. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias. Emphasis is on qualitative descriptions.

HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

LC-HS-PS2-2a Identify an example of the law of conservation of momentum (e.g., in a collision, the momentum change of an object is equal to and opposite of the momentum change of the other object) represented using graphical or visual displays (e.g., pictures, pictographs, drawings, written observations, tables, charts).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	FORCES AND MOTION	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Newton's second law accurately predicts changes in the motion of macroscopic objects.	Empirical evidence is
experiences and progresses to	(HS.PS2.A.a)	required to differentiate
introducing more detailed statistical		between cause and
analysis, the comparison of data	Unbalanced forces applied to an object will cause acceleration.	correlation and make
sets for consistency, and the use of	The size of this acceleration is determined by the mass of the object and the size of force	claims about specific
models to generate and analyze	applied.	causes and effects.
data.	Forces might change the motion of objects (e.g., During tug-of-war, if forces on opposite	
 Analyze data using tools, 	teams are equal, the rope will not move.).	Evidence is required
technologies, and/or models (e.g.,	Forces change the motion of objects. Newton's Laws can be used to predict these changes.	when attributing an
computational, mathematical) in	Newton's second law describes the effects of the size of the total force and the object's mass	observed phenomenon
order to make valid and reliable	on its resulting acceleration.	to a specific cause.
scientific claims or determine an	The reason why objects may react differently to equal sized forces is explained by Newton's	Evidence is required to
optimal design solution.	second law.	explain the causal
		mechanisms in a system
Analyze data using tools in order to		under study.
make valid and reliable scientific		Evidence is required to
claims.		support a claim about
Analyze data using tools in order to		the causal mechanisms
determine an optimal design		in a system under
solution.		study.
Analyze data using technology in		
order to make valid and reliable		
scientific claims.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyze data using technology in		
order to determine an optimal		
design solution.		
Analyze data using models in order		
to make valid and reliable scientific		
claims.		
Analyze data using models in order		
to determine an optimal design		
solution.		
solution.		

Clarification Statement	
	Examples of data could include tables or graphs of position or velocity as a
	function of time for objects subject to a net unbalanced force, such as a falling
Physical Science	object, an object rolling down a ramp, or a moving object being pulled by a
	constant force. Emphasis is on one-dimensional motion and macroscopic
	objects moving at nonrelativistic speeds.
	Examples of data could include tables or graphs of position or velocity as a
	function of time for objects subject to a net unbalanced force, such as a falling
Chamisture	object, an object rolling down a ramp, or a moving object being pulled by a
Chemistry	constant force. Emphasis is on kinematics, one-dimensional motion, two-
	dimensional motion, and macroscopic objects moving at non-relativistic
	speeds.

HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

LC-HS-PS2-2a Identify an example of the law of conservation of momentum (e.g., in a collision, the momentum change of an object is equal to and opposite of the momentum change of the other object) represented using graphical or visual displays (e.g., pictures, pictographs, drawings, written observations, tables, charts).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	FORCES AND MOTION	SYSTEMS AND SYSTEM
computational thinking:	Momentum is defined for a particular frame of reference; it is the mass times the velocity of	MODELS
Mathematical and computational	the object. In any system, total momentum is always conserved. (HS.PS2A.b)	When investigating or
thinking in 9-12 builds on K-8		describing a system, the
experiences and progresses to using	Momentum is the product of an object's mass and its velocity.	boundaries and initial
algebraic thinking and analysis, a	Momentum is determined by the speed of an object and the direction it is traveling	conditions of the system
range of linear and nonlinear	(velocity) of an object and the object's mass.	need to be defined and
functions, including, computational	The momentum of an object is in the same direction as its velocity.	their inputs and outputs
tools for statistical analysis to	The more momentum an object has, the harder it is to stop.	analyzed and described
analyze, represent, and model data.	The Law of Conservation of Momentum can be used to predict the outcomes of collisions	using models.
Simple computational simulations	between objects and can aid in understanding the energy transfers and energy	
are created and used based on	transformations in these collisions.	Making models helps
mathematical models of basic		people understand
assumptions.	If a system interacts with objects outside itself, the total momentum of the system can	things they cannot
Use mathematical, computational,	change; however, any such change is balanced by changes in the momentum of objects	observe directly.
and/or algorithmic	outside the system. (HS.PS2A.c)	Scientists use models to
representations of phenomena or		represent things that
design solutions to	Momentum is conserved as long as there are no new objects added to the system.	are either very large or
describe and/or support claims	The total momentum of any group of objects remains the same unless outside forces act on	very small.
and/or explanations.	the object.	Any model of a system
	Only unbalanced forces can change the momentum of an object.	incorporates
Use mathematical or algorithmic	An impulse represents how much the momentum of an object changes when a force acts on	assumptions and
forms for scientific modeling of	it over a period of time.	approximations (e.g.,
phenomena to describe claims.		the boundaries and
Use mathematical or algorithmic		initial conditions of the

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
forms for scientific modeling of	The impulse describes the relationship between the force acting on an object and the	system, inputs and
design solutions to describe claims.	change it produces in the object's momentum.	outputs).
Use mathematical or algorithmic		It is critical to be aware
forms for scientific modeling of		of a system's physical,
phenomena to support claims.		chemical, biological,
Use mathematical or algorithmic		and social interactions
forms for scientific modeling of		and how they affect the
design solutions to support claims.		model's reliability and
Use mathematical or algorithmic		precision.
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement		
Physical Science	Emphasis is on calculating momentum and the qualitative meaning of	
Physical Science	conservation of momentum.	
	Emphasis is on the quantitative conservation of momentum in interactions and	
Chemistry	the qualitative meaning of this principle as well as systems of two macroscopic	
	bodies moving in one dimension.	

HS-PS2-3 Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. LC-HS-PS2-3a Evaluate a device (e.g., football helmet or a parachute) designed to minimize force by comparing data (i.e., momentum, mass, velocity, force, or time).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	FORCES AND MOTION	CAUSE AND EFFECT
designing solution: Constructing	If a system interacts with objects outside itself, the total momentum of the system can	Systems can be
explanations (science) and designing	change; however, any such change is balanced by changes in the momentum of objects	designed to cause a
solutions (engineering) in 9-12	outside the system. (HS.PS2A.c)	desired effect.
builds on K-8 experiences and	Momentum is conserved as long as there are no new objects added to the system.	
progresses to explanations and	The total momentum of any group of objects remains the same unless outside forces act on	It is important to
designs that are supported by	the object.	describe the design of a
multiple and independent student-	Only unbalanced forces can change the momentum of an object.	solution and the
generated sources of evidence	An impulse represents how much the momentum of an object changes when a force acts on	features that make it
consistent with scientific ideas,	it over a periods of time.	successful.
principles, and theories.	The impulse describes the relationship between the force acting on an object and the	An intentional change
 Design, evaluate, and/or refine a 	change it produces in the object's momentum.	to a system can cause a
solution to a complex real-world		desired effect.
problem, based on scientific	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
knowledge, student-generated	Criteria and constraints also include satisfying any requirements set by society, such as taking	
sources of evidence, prioritized	issues of risk mitigation into account, and they should be quantified to the extent possible	
criteria, and tradeoff considerations.	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
Design a solution to a complex real-	the design of the device.	
world problem, based on scientific	The social, economic, and political forces of a society have a significant influence on what	
knowledge, student-generated	science and technology solutions are implemented.	
sources of evidence, prioritized		
criteria, and tradeoff	OPTIMIZING THE DESIGN SOLUTION	
considerations.	Criteria may need to be broken down into simpler ones that can be approached	
Evaluate a solution to a complex	systematically, and decisions about the priority of certain criteria over others (tradeoffs) may	
real-world problem, based on	be needed. (HS.ETS1C.a)	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex real- world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	It is important to prioritize the benefits and costs of the design of a solution to a problem. The decision as to which criteria are critical and which ones can be traded off is a judgment based on the situation and the needs of the system.	

Clarification Statement		
Physical Science	Examples of evaluation and refinement could include determining the success of a device at protecting an object from damage such as, but not limited to, impact resistant packaging and modifying the design to improve it. Emphasis is on qualitative evaluations.	
Chemistry	Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it by applying the impulse-momentum theorem. Examples of a device could include a football helmet or an airbag. Emphasis is on qualitative evaluations and/or algebraic manipulations.	

HS-PS2-4 Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.

LC-HS-PS2-4a Use Newton's law of universal gravitation as a mathematical model to qualitatively describe or predict the effects of gravitational forces in systems with two objects.

LC-HS-PS2-4b Use Coulomb's law to qualitatively describe or predict the electrostatic forces in systems with two objects.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	TYPES OF INTERACTIONS	PATTERNS
computational thinking:	Newton's Law of Universal Gravitation and Coulomb's Law provide the mathematical models	Different patterns may
Mathematical and computational	to describe and predict the effects of gravitational and electrostatic forces between objects	be observed at each of
thinking in 9-12 builds on K-8	not in physical contact. (HS.PS2B.a)	the scales at which a
experiences and progresses to using	Gravitational, electric, and magnetic forces between a pair of objects do not require that	system is studied and
algebraic thinking and analysis, a	they be in contact.	can provide evidence for
range of linear and nonlinear	These forces are explained by force fields that contain energy and can transfer energy	causality in explanations
functions (e.g., trigonometric,	through space.	of phenomena.
exponential and logarithmic) and	Gravitational force is a universal force of attraction that acts between masses, but this force	
computational tools for statistical	is only significant when one (or both) of the objects is massive (for example, a star, planet or	Patterns can be used to
analysis to analyze, represent, and	moon).	explain phenomena.
model data. Simple computational	Newton's Law of Universal Gravitation provides the mathematical model to describe and	Different patterns can
simulations are created and used	predict the effects of gravitational forces between distant objects.	be observed at different
based on mathematical models of	Electric forces and magnetic forces are different aspects of a single electromagnetic	scales (micro and
basic assumptions.	interaction.	macro) in a system.
• Use mathematical, computational,	Coulomb's law provides the mathematical model to describe and predict the effects of	Classifications used at
and/or algorithmic representations	electrostatic forces (relating to stationary electric charges or fields) between distant objects	one scale may fail or
of phenomena or design solutions to	Attractive or repulsive forces between objects are relative to their charges and the distance	need revision when
describe and/or support claims	between them (Coulombs Law).	information from
and/or explanations.		smaller or larger scales
	Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating	is introduced.
Use mathematical or algorithmic	space that can transfer energy through space. Magnets or electric currents cause magnetic	
forms for scientific modeling of	fields; electric charges or changing magnetic fields cause electric fields. (HS.PS2B.b)	
phenomena to describe claims.	Moving electric charges produce magnetic fields; changing magnetic fields induce electric	
Use mathematical or algorithmic	currents.	

Science and Engineering Practice Disciplinary Core Idea	Crosscutting Concept
An electric field is a region around a magnet in which a magnetic force acts. (It is not always an attraction, sometimes it is a repulsion.) Moving electric charges produce magnetic fields. Electrical energy carried by currents in wires can be used to create magnetic fields. Be mathematical or algorithmic orms for scientific modeling of esign solutions to support claims. Is emathematical or algorithmic orms for scientific modeling of esign solutions to support claims. Is emathematical or algorithmic orms for scientific modeling of henomena to describe explanations. Is emathematical or algorithmic orms for scientific modeling of esign solutions to describe explanations. Is emathematical or algorithmic orms for scientific modeling of henomena to support explanations. Is emathematical or algorithmic orms for scientific modeling of henomena to support explanations. Is emathematical or algorithmic orms for scientific modeling of henomena to support explanations. Is emathematical or algorithmic orms for scientific modeling of henomena to support explanations to support explanations or scientific modeling of henomena to support explanations.	Crosscutting Concept

Clarification Statement

Emphasis is on both quantitative and conceptual descriptions of gravitational and electric fields.

HS-PS2-5 Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

LC-HS-PS2-5a Identify situations and provide evidence where an electric current is producing a magnetic field. LC-HS-PS2-5b Identify situations and provide evidence where a magnetic field is producing an electric current.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	TYPES OF INTERACTIONS	CAUSE AND EFFECT
Investigations: Planning and	Forces that act over a distance are explained by fields (gravitational, electric, and magnetic)	Empirical evidence is
carrying out investigations to	permeating space that can transfer energy through space. Magnets or electric currents cause	required to differentiate
answer questions or test solutions	magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS.PS2B.b)	between cause and
to problems in 9-12 builds on K-8		correlation and make
experiences and progresses to	Moving electric charges produce magnetic fields; changing magnetic fields induce electric	claims about specific
include investigations that provide	currents.	causes and effects.
evidence for and test conceptual,	An electric field is the field around a charged particle that exerts a force on other charged	
mathematical, physical, and	particles.	Evidence is required
empirical models.	A magnetic field is a region around a magnet in which magnetic attraction acts.	when attributing an
 Plan and conduct an investigation 	Gravity is the force which pulls objects together.	observed phenomenon
individually and collaboratively to	Moving electric charges produce magnetic fields.	to a specific cause.
produce data to serve as the basis	Electrical energy carried by currents in wires can be used to create magnetic fields.	Evidence is required to
for evidence, and in the design:	Magnets and rotating coils can be used to create electric currents.	explain the causal
decide on types, how much, and		mechanisms in a system
accuracy of data needed to produce	DEFINITIONS OF ENERGY	under study.
reliable measurements and consider	"Electrical energy" may mean energy stored in a battery or energy transmitted by electric	Evidence is required to
limitations on the precision of the	currents. (HS.PS3A.d)	support a claim about
data (e.g., number of trials, cost,		the causal mechanisms
risk, time), and refine the design	Electrical energy is a form of energy that can be transferred by moving charges through a	in a system under
accordingly.	complete circuit.	study.
	A battery is a combination of two or more electrochemical cells in a series.	
Plan an investigation individually	Batteries are portable sources of electrical energy.	
and collaboratively to produce data		
to serve as the basis for evidence,		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and in the design: decide on types,		
how much, and accuracy of data		
needed to produce reliable		
measurements.		
Revise an investigation individually		
and collaboratively to produce data		
to serve as the basis for evidence.		
Conduct an investigation		
individually and collaboratively to		
produce data to serve as the basis		
for evidence.		
for evidence.		

Clarification Statement		
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the	
,	relationship between a current-carrying wire and a magnetic compass.	
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.	

HS-PS3-1 Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

LC-HS-PS3-1a Identify a model showing the change in the energy of one component in a system compared to the change in energy of another component in the system.

LC-HS-PS3-1b Identify a model showing the change in energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	DEFINITIONS OF ENERGY	SYSTEMS AND SYSTEM
computational thinking:	Energy is a quantitative property of a system that depends on the motion and interactions of	MODELS
Mathematical and computational	matter and radiation within that system. That there is a single quantity called energy is due to	Models can be used to
thinking in 9-12 builds on K-8	the fact that a system's total energy is conserved, even as, within the system, energy is	predict the behavior of a
experiences and progresses to using	continually transferred from one object to another and between its various possible forms.	system, but these
algebraic thinking and analysis, a	(HS.PS3A.a)	predictions have limited
range of linear and nonlinear		precision and reliability
functions including, computational	Energy is the ability to do work or cause change.	due to the assumptions
tools for statistical analysis to	Energy transforms from one form to another, but these transformations are not always	and approximations
analyze, represent, and model data.	reversible.	inherent in models.
Simple computational simulations	A system's total energy is conserved regardless of the transfers within the system.	
are created and used based on	The total energy of a system changes only by the amount of energy transferred into and out	Models can be valuable
mathematical models of basic	of the system.	in predicting a system's
assumptions.		behaviors.
Create and/or revise a	CONSERVATION OF ENERGY AND ENERGY TRANSFER	Any model of a system
computational model or simulation	Conservation of energy means that the total change of energy in any system is always equal	incorporates
of a phenomenon, designed device,	to the total energy transferred into or out of the system. (HS.PS3B.a)	assumptions and
process, or system.		approximations.
	The law of conservation of energy states that when one form of energy is converted to	As a result, model-
Create a computational model of a	another, no energy is destroyed in the process.	based predictions have
phenomenon.	According to the law of conservation of energy, energy cannot be created or destroyed.	limited precision and
Revise a computational model of a	The total change of energy in any system is always equal to the total energy transferred	reliability.
phenomenon.	into or out of the system.	
Create a simulation of a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
phenomenon.	Energy cannot be created or destroyed, but it can be transported from one place to another	
Revise a simulation of a	and transferred between systems. (HS.PS3B.b)	
phenomenon.		
Create a computational model of a	Energy cannot be created or destroyed.	
designed device.	Energy can be transferred from one object to another and can be transformed from one	
Revise a computational model of a	form to another.	
designed device.	The processes of energy transformation and energy transfer can be used to understand the	
Create a simulation of a designed	changes that take place in physical systems.	
device.		
Revise a simulation of a designed	Mathematical expressions allow the concept of conservation of energy to be used to predict	
device.	and describe system behavior. These expressions quantify how the stored energy in a system	
Create a computational model of a	depends on its configuration (e.g., relative positions of charged particles, compression of a	
process.	spring) and how kinetic energy depends on mass and velocity. (HS.PS3B.c)	
Revise a computational model of a		
process.	The amount of energy available in a system is mathematically calculable.	
Create a simulation of a process.	Mathematical expressions quantify forms of energy in a system.	
Revise a simulation of a process.	These forms can be grouped into types of energy that are associated with the motion of	
Create a computational model of a	mass (kinetic energy), and types of energy associated with the position of mass and energy	
system.	fields (potential energy).	
Revise a computational model of a		
system.	The availability of energy limits what can occur in any system. (HS.PC3B.d)	
Create a simulation of a system.		
Revise a simulation of a system.	The amount of energy available in a system determines what the system is capable of	
	doing.	

Clarification Statement	
Emphasis is on explaining the meaning of mathematical ex	
Physical Science	the model. Focus is on basic algebraic expression or computations, systems of
	two or three components, and thermal energy.
	Emphasis is on explaining the meaning of mathematical expressions used in
Chemistry	the model. Focus is on basic algebraic expression or computations; systems of

Clarification Statement	
two or three components; and thermal energy, kinetic energy, and/or the	
energies in gravitational, magnetic, or electric fields.	

HS-PS3-2 Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).

LC-HS-PS3-2a Identify that two factors, an object's mass and height above the ground, affect gravitational potential energy (i.e., energy stored due to position of an object above Earth) at the macroscopic level.

LC-HS-PS3-2b Identify that the mass of an object and its speed determine the amount of kinetic energy the object possesses.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	DEFINITIONS OF ENERGY	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Energy is a quantitative property of a system that depends on the motion and interactions of	Energy cannot be
experiences and progresses to using,	matter and radiation within that system. There is a single quantity called energy. A system's	created or destroyed—it
synthesizing, and developing models	total energy is conserved, even as, within the system, energy is continually transferred from	only moves between
to predict and show relationships	one object to another and between its various possible forms. (HS.PS3A.a)	one place and another
among variables between systems		place, between objects
and their components in the natural	Energy is the ability to do work or cause change.	and/or fields, or
and designed world(s).	Energy transforms from one form to another, but these transformations are not always	between systems.
 Develop, revise, and/or use a 	reversible.	
model based on evidence to	A system's total energy is conserved regardless of the transfers within the system.	Energy cannot be
illustrate and/or predict the	The total energy of a system changes only by the amount of energy transferred into and out	created or destroyed.
relationships between systems or	of the system.	Energy can be
between components of a system.		transferred from one
	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	object to another and
Develop or use a model to identify	light, and thermal energy. (HS.PS3A.b)	can be transformed
and describe the components of a		from one form to
system.	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	another, but the total
Develop or use a model to identify		amount of energy never
and describe the relationships	These relationships are better understood at the microscopic scale, at which all of the	changes.
between the components of a	different manifestations of energy can be modeled as a combination of energy associated	
system.	with the motion of particles and energy associated with the configuration (relative position of	
Develop or use a model to predict	the particles). In some cases the relative position energy can be thought of as stored in fields	
relationships between systems or	(which mediate interactions between particles). This last concept includes radiation, a	
within a system.	phenomenon in which energy stored in fields moves across space. (HS.PS3A.c)	
Identify that models can help		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between systems or within a system.	Energy can be modeled as either motions of particles or as stored in force fields (electric, magnetic, gravitational). At the microscopic scale, energy can be understood as a force that mediates interactions between particles. Electromagnetic radiation is a phenomenon in which energy stored in fields moves across space (light, radio waves) with no supporting matter medium.	

Clarification Statement		
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the relationship between a current-carrying wire and a magnetic compass.	
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.	

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

LC-HS-PS3-3a Identify the forms of energy that will be converted by a device that converts one form of energy into another form of energy.

LC-HS-PS3-3b Identify steps in a model of a device showing the transformations of energy that occur (e.g., solar cells, solar ovens, generators, turbines).

LC-HS-PS3-3c Describe constraints to the design of the device which converts one form of energy into another form of energy (e.g., cost or efficiency of energy conversion).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing solutions: Constructing	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	Changes of energy and
explanations (science) and designing	light, and thermal energy. (HS.PS3A.b)	matter in a system can
solutions (engineering) in 9-12		be described in terms of
builds on K-8 experiences and	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	energy and matter flows
progresses to explanations and		into, out of, and within
designs that are supported by	ENERGY IN CHEMICAL PROCESSES	that system.
multiple and independent student-	Although energy cannot be destroyed, it can be converted to other forms—for example, to	
generated sources of evidence consistent with scientific ideas,	thermal energy in the surrounding environment. (HS.PS3D.a)	The processes of energy transformation and
•	A system does not destroy energy when sarrying out any process	-
principles, and theories.	A system does not destroy energy when carrying out any process.	energy transfer can be
Design, evaluate, and/or refine a	When carrying out a process, most often some or all of the energy has been transferred to	used to understand the
solution to a complex real-world	heat the surrounding environment.	changes that take place
problem, based on scientific	Energy can be transformed into other energy forms.	in physical systems.
knowledge, student-generated	To produce energy typically means to convert some stored energy into a desired form.	
sources of evidence, prioritized		
criteria, and tradeoff considerations.	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Criteria and constraints also include satisfying any requirements set by society, such as taking	
Design a solution to a complex real-	issues of risk mitigation into account, and they should be quantified to the extent possible	
world problem, based on scientific	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
knowledge, student-generated		
sources of evidence, prioritized	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
criteria, and tradeoff	the design of the device.	
considerations.		
Evaluate a solution to a complex		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	The social, economic, and political forces of a society have a significant influence on what science and technology solutions are implemented.	

Clarification Statement		
Physical Science	Emphasis is on qualitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Emphasis is on devices constructed with teacher approved materials. Examples of devices can be drawn from chemistry or physics clarification statements below.	
Chemistry	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in chemistry could include hot/cold packs and batteries.	
Physics	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in physics could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and electric motors.	

HS-PS3-4 Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). LC-HS-PS3-4a Identify the temperatures of two liquids of different temperature before mixing and after combining to show uniform energy distribution. LC-HS-PS3-4b Investigate the transfer of thermal energy when two substances are combined within a closed system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CONSERVATION OF ENERGY AND ENERGY TRANSFER	SYSTEMS AND SYSTEM
investigations: Planning and	Energy cannot be created or destroyed, but it can be transported from one place to another,	MODELS
carrying out investigations to	transformed into other forms, and transferred between systems. (HS.PS3B.b)	When investigating or
answer questions (science) or test		describing a system, the
solutions to problems (engineering)	Energy cannot be created or destroyed.	boundaries and initial
in 9-12 builds on K-8 experiences	Energy can be transferred from one object to another and can be transformed from one	conditions of the system
and progresses to include	form to another.	need to be defined and
investigations that provide evidence	The processes of energy transformation and energy transfer can be used to understand the	their inputs and outputs
for and test conceptual,	changes that take place in physical systems.	analyzed and described
mathematical, physical, and		using models.
empirical models.	Uncontrolled systems always evolve toward more stable states—that is, toward more uniform	
Plan and conduct an investigation	energy distribution (e.g., water flows downhill, objects hotter than their surrounding	Making models helps
individually and collaboratively to	environment cool down). (HS.PS3B.e)	people understand
produce data to serve as the basis		things they cannot
for evidence, and in the design:	Energy can change from one kind to another.	observe directly.
decide on types, how much, and	When two substances (e.g., water or air) of different temperature are combined (within a	Scientists use models to
accuracy of data needed to produce	closed system), the result will be a more uniform temperature (energy) distribution in the	represent things that
reliable measurements and consider	system.	are either very large or
limitations on the precision of the		very small.
data (e.g., number of trials, cost,	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	Any model of a system
risk, time), and refine the design	Although energy cannot be destroyed, it can be converted to less useful other forms—for	incorporates
accordingly.	example, to thermal energy in the surrounding environment. (HS.PS3D.a)	assumptions and
		approximations (e.g.,
Plan an investigation individually	Energy can be transformed into other energy forms.	the boundaries and
and collaboratively to produce data		initial conditions of the
to serve as the basis for evidence,		system, inputs and

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements. Revise an investigation individually and collaboratively to produce data to serve as the basis for evidence. Conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence.	When "producing" or "using" energy, most often some or all of the energy has been transferred to heat the surrounding environment.	outputs). It is critical to be aware of a system's physical, chemical, biological, and social interactions and how they affect the model's reliability and precision.

Clarification Statement		
Physical Science, Chemistry, and Physics	Emphasis is on analyzing data from student investigations and using mathematical thinking appropriate to the subject to describe the energy changes quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.	

HS-PS3-5 Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

LC-HS-PS3-5a Use a model to identify the cause and effect relationships between forces produced by electric or magnetic fields and the change of energy of the objects in the system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	RELATIONSHIP BETWEEN ENERGY AND FORCES	CAUSE AND EFFECT
Modeling in 9-12 builds on K-8	When two objects interacting through a field change relative position, the energy stored in	Cause and effect
experiences and progresses to using	the field is changed. (HS.PS3C.a)	relationships can be
synthesizing and developing models		suggested and predicted
to predict and show relationships	When two objects interact, each one exerts a force on the other.	for complex natural and
among variables between systems	These forces can transfer energy between the objects.	human-designed
and their components in the natural	Forces between two objects at a distance are explained by force fields (gravitational,	systems by examining
and designed world(s).	electric, or magnetic) between them.	what is known about
 Develop, revise, and/or use a 	The energy stored in the field is consistent with the change in energy of the objects.	smaller scale
model based on evidence to		mechanisms within the
illustrate and/or predict the		system.
relationships between systems or		
between components of a system.		An understanding of
		small scale mechanisms
Develop or use a model to identify		within a system can
and describe the components of a		uncover cause and
system.		effect relationships for
Develop or use a model to identify		complex systems
and describe the relationships		(natural and human-
between the components of a		designed).
system.		An understanding of
Develop or use a model to predict		small scale mechanisms
relationships between systems or		within a system can be
within a system.		predictive of cause and
Identify that models can help		effect relationships for
		complex systems

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		(natural and human-
systems or within a system.		designed).

Clarification Statement		
Physical Science	Examples of models could include drawings, diagrams, simulations and texts, such as what happens when two charged objects or two magnetic poles are near each other.	
Physics	Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.	

HS-PS4-1 Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

LC-HS-PS4-1a Qualitatively describe cause and effect relationships between changes in wave speed and type of media through which the wave travels using mathematical and graphical representations.

LC-HS-PS4-1b Identify examples that illustrate the relationship between the frequency and wavelength of a wave.

LC-HS-PS4-1c Identify evidence that the speed of a wave depends on the media through which it travels.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WAVE PROPERTIES	CAUSE AND EFFECT
computational thinking:	The wavelength and frequency of a wave are related to one another by the speed of travel of	Empirical evidence is
Mathematical and computational	the wave, which depends on the type of wave and the medium through which it is passing.	required to differentiate
thinking in 9-12 builds on K-8	(HS.PS4A.a)	between cause and
experiences and progresses to using		correlation and make
algebraic thinking and analysis, a	The speed of a wave in a particular medium is constant. For this wave, the frequency and	claims about specific
range of linear and nonlinear	the wavelength are related to one another.	causes and effects.
functions (e.g., trigonometric,	The speed of a wave can also be affected by the type of material through which it travels.	
exponential and logarithmic) and		Evidence is required
computational tools for statistical		when attributing an
analysis to analyze, represent, and		observed phenomenon
model data. Simple computational		to a specific cause.
simulations are created and used		Evidence is required to
based on mathematical models of		explain the causal
basic assumptions.		mechanisms in a system
• Use mathematical, computational,		under study.
and/or algorithmic representations		Evidence is required to
of phenomena or design solutions to		support a claim about
describe and/or support claims		the causal mechanisms
and/or explanations.		in a system under
		study.
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe claims.		

Disciplinary Core Idea	Crosscutting Concept
	Disciplinary Core Idea

Clarification Statement		
	Emphasis is on describing waves both qualitatively and quantitatively.	
Physical Science	Qualitative focus includes standard repeating waves and	
	transmission/absorption of electromagnetic waves/radiation.	
Physics	Examples of data could include electromagnetic radiation traveling through a	
	vacuum and glass, sound waves traveling through air and water, and seismic	

Clarification Statement		
	waves traveling through the Earth. Emphasis is on algebraic relationships and	
	describing those relationships qualitatively.	

HS-PS4-3 Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.

LC-HS-PS4-3a Identify a model or description of electromagnetic radiation as a wave model.

LC-HS-PS4-3b Identify a model or description of electromagnetic radiation as a particle model.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	WAVE PROPERTIES	SYSTEMS AND SYSTEM
evidence: Engaging in argument	Waves can add or cancel one another as they cross, depending on their relative phase (i.e.,	MODELS
from evidence in 9-12 builds on K-8 experiences and progresses to using	relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (HS.PS4A.b)	Models (e.g., physical, mathematical,
appropriate and sufficient evidence		computer models) can
and scientific reasoning to defend	Interference is when two waves interact.	be used to simulate
and critique claims and explanations	Standing waves are formed by the interference of two waves moving in the opposite	systems and
about the natural and designed	direction through the same medium.	interactions—including
world(s). Arguments may also come	Interfering waves emerge unaffected by each other.	energy, matter, and
from current scientific or historical		information flows—
episodes in science.	ELECTROMAGNETIC RADIATION	within and between
Evaluate the claims, evidence, and	Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of	systems at different
reasoning behind currently accepted	changing electric and magnetic fields or as particles called photons. The wave model is useful	scales.
explanations or solutions to	for explaining many features of electromagnetic radiation, and the particle model explains	
determine the merits of arguments.	other features. (HS.PS4B.a)	Models can be used to
		simulate systems.
Evaluate the claims behind	Energy from the sun takes the form of electromagnetic waves such as infrared, visible, and	Models can be used to
currently accepted explanations to	ultraviolet electromagnetic waves.	simulate interactions.
determine the merits of arguments.	Electromagnetic waves carry a single form of energy called electromagnetic (radiant)	Models can be used
Evaluate the claims behind	energy.	simulate interactions
currently accepted solutions to	The radiation from the sun consists of a range of energies in the electromagnetic spectrum.	within systems at
determine the merits of arguments.	Electromagnetic radiation when absorbed can be converted to thermal energy.	different scales.
Evaluate the evidence behind	Electromagnetic waves carry energy that can have important consequences when	Models can be used
currently accepted explanations to	transferred to objects or substances.	simulate interactions
determine the merits of arguments.	Some electromagnetic radiation can cause damage to living cells.	
Evaluate the evidence behind		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
currently accepted solutions to		between systems at
determine the merits of arguments.		different scales.
Evaluate the reasoning behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted solutions to		
determine the merits of arguments.		

Clarification Statement

Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, interference, diffraction, and photoelectric effect. Quantum theory is not included.

