

Performance Expectation and Louisiana Connectors

HS-PS1-1 Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level and the composition of the nucleus of atoms.

LC-HS-PS1-1a Identify the periodic table as a model to use to predict the properties of elements.

LC-HS-PS1-1b Identify that the periodic table was created based on the patterns of electrons in the outermost energy level of atoms.

LC-HS-PS1-1c Identify that the number of electrons in the outermost energy level of atoms impacts the behavior of the element.

LC-HS-PS1-1d Identify the periodic table as a model that predicts the number of electrons and other subatomic particles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
Modeling in 9-12 builds on K-8	Each atom has a charged substructure consisting of a nucleus, which is made of protons and	Different patterns may
experiences and progresses to using,	neutrons, surrounded by electrons. (HS.PS1A.a)	be observed at each of
synthesizing, and developing models		the scales at which a
to predict and show relationships	Atoms are the basic unit of a chemical element.	system is studied and
among variables between systems	Atoms are made of subatomic particles: protons, neutrons, and electrons.	can provide evidence for
and their components in the natural	Atoms have a nucleus.	causality in explanations
and designed worlds.	The nucleus of an atom is made of positively charged protons and neutrons, which have no	of phenomena.
 Develop, revise, and/or use a 	net charge.	
model based on evidence to	A positively charged nucleus is surrounded by smaller negatively charged electrons.	Patterns can be used to
illustrate and/or predict the		explain phenomena.
relationships between systems or	The periodic table orders elements horizontally by the number of protons in the atom's	Different patterns can
between components of a system.	nucleus and places those with similar chemical properties in columns. The repeating patterns	be observed at different
	of this table reflect patterns of outer electron states. (HS.PS1A.b)	scales (micro and
Use a model based on evidence to		macro) in a system.
identify and describe the	Electrons in the outermost energy level are called valence electrons.	Classifications used at
components of a system.	The periodic table of elements is an arrangement of the chemical elements ordered by	one scale may fail or
Use a model based on evidence to	atomic number or the number of protons in atoms.	need revision when
identify and describe the	The periodic table is used to predict the patterns of behavior of elements.	information from
relationships between the	The arrangement of the groups of the periodic table reflects the patterns of electrons in the	smaller or larger scales
components of a system.	outermost energy level of atoms, and therefore, the chemical properties of the elements in	is introduced.
Use a model based on evidence to	each group.	
predict relationships between	The atomic mass listed for each element on the periodic table corresponds to the relative	
systems or within a system.	abundance of that element's different isotopes.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Identify that models can help illustrate relationships between systems or within a system.	TYPES OF INTERACTIONS Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (HS.PS2B.c)	
	The patterns and behaviors of elements are based on the attraction and repulsion between electrically charged particles and the patterns of the outermost electrons. The reactivity and electronegativity of atoms can be determined by an element's location on the periodic table and its valence electrons attraction to the nucleus. The number and types of bonds formed by an element and between elements, the number and charges of stable ions, and the relative sizes of atoms can be determined by an element's location on the periodic table.	

Clarification	n Statement
	Examples of properties that could be predicted from patterns could include
Physical Science	metals, nonmetals, metalloids, number of valence electrons, types of bonds
	formed, or atomic mass. Emphasis is on main group elements.
	Examples of properties that could be predicted from patterns could include
	reactivity of metals, types of bonds formed, numbers of bonds formed, atomic
Chemistry	radius, atomic mass, or reactions with oxygen. Emphasis is on main group
	elements and qualitative understanding of the relative trends of ionization
	energy and electronegativity.

Performance Expectation and Louisiana Connectors

HS-PS1-2 Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.

LC-HS-PS1-2a Identify an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms.

LC-HS-PS1-2b Identify an explanation for the outcome of a simple chemical reaction based on trends in the periodic table.

LC-HS-PS1-2c Construct an explanation for the outcome of a simple chemical reaction based on the chemical properties of the elements involved.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
designing solutions: Constructing	The periodic table orders elements horizontally by the number of protons in the atom's	Different patterns may
explanations (science) and designing	nucleus and places those with similar chemical properties in columns. The repeating patterns	be observed at each of
solutions (engineering) in 9-12	of this table reflect patterns of outer electron states. (HS.PS1A.b)	the scales at which a
builds on K-8 experiences and		system is studied and
progresses to explanations and	Electrons in the outermost energy level are called valence electrons.	can provide evidence for
designs that are supported by	The periodic table of elements is an arrangement of the chemical elements ordered by	causality in explanations
multiple and independent student-	atomic number as determined by an atoms number of protons.	of phenomena.
generated sources of evidence	The periodic table is used to predict the patterns of behavior of elements.	
consistent with scientific ideas,	The arrangement of the groups of the periodic table reflects the patterns of electrons in the	Patterns can be used to
principles, and theories.	outermost energy level of atoms, and therefore, the chemical properties of the elements in	explain phenomena.
 Construct and revise an 	each group.	Different patterns can
explanation based on valid and	The atomic mass listed for each element on the periodic table corresponds to the relative	be observed at different
reliable evidence obtained from a	abundance of that element's different isotopes.	scales (micro and
variety of sources (including		macro) in a system.
students' own investigations,	CHEMICAL REACTIONS	Classifications used at
models, theories, simulations, peer	The fact that atoms are conserved, together with knowledge of the chemical properties of the	one scale may fail or
review) and the assumption that	elements involved, can be used to describe and predict chemical reactions. (HS.PS1B.c)	need revision when
theories and laws that describe the		information from
natural world operate today as they	A chemical reaction is the process in which substances undergo chemical changes that	smaller or larger scales
did in the past and will continue to	results in the formation of new substances.	is introduced.
do so in the future.	Atoms are conserved in chemical reactions.	
	Predicting involves making an inference about a future event based on evidence.	
Construct an explanation based on		
valid and reliable evidence from a		

Disciplinary Core Idea	Crosscutting Concept
An element's chemical and physical properties can be predicted knowing only its position on	
the periodic table.	
	Disciplinary Core Idea An element's chemical and physical properties can be predicted knowing only its position on the periodic table.

Clarificatio	n Statement
	Examples of chemical reactions could include the reaction of sodium and
Dhycical Science	chlorine, carbon and oxygen, or hydrogen and oxygen. Reaction classification
Physical Science	includes synthesis, decomposition, single displacement, double displacement,
	and acid-base.
	Examples of chemical reactions could include the reaction of sodium and
Chamister	chlorine, carbon and oxygen, or carbon and hydrogen. Reaction classification
Chemistry	aids in the prediction of products (e.g., synthesis, decomposition, single
	displacement, double displacement, and acid-base).

Performance Expectation and Louisiana Connectors

HS-PS1-3 Plan and conduct an investigation to gather evidence to compare the structure of substances at the macroscale to infer the strength of electrical forces between particles.

LC-HS-PS1-3a Identify bulk properties of substances (i.e., melting point, boiling point, and surface tension).

LC-HS-PS1-3b Identify that electrical forces within and between atoms can keep particles close together.

LC-HS-PS1-3c Conduct an experiment to gather evidence of the strength of electrical forces between particles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
investigations: Planning and	The structure and interactions of matter at the macro scale are determined by electrical	Different patterns may
carrying out investigations to	forces within and between atoms. (HS.PS1A.c)	be observed at each of
answer questions (science) or test		the scales at which a
solutions (engineering) to problems	Electrical attractions and repulsions between charged particles (i.e., atomic nuclei and	system is studied and
in 9-12 builds on K-8 experiences	electrons) in matter explain the structure of atoms and the forces between atoms that cause	can provide evidence for
and progresses to include	them to form compounds.	causality in explanations
investigations that provide evidence	The varied properties (e.g., hardness, conductivity) of the materials can be understood in	of phenomena.
for and test conceptual,	terms of the atomic and molecular constituents and the forces within and between them.	
mathematical, physical, and		Patterns can be used to
empirical models.	TYPES OF INTERACTIONS	explain phenomena.
 Plan and conduct an investigation 	Attraction and repulsion between electric charges at the atomic scale explain the structure,	Different patterns can
individually and/or collaboratively to	properties, and transformations of matter, as well as the contact forces between material	be observed at different
produce data to serve as the basis	objects. (secondary) (HS.PS2B.c)	scales (micro and
for evidence, and in the design:		macro) in a system.
decide on types, how much, and	An atom's electron structure determines its physical and chemical properties.	Classifications used at
accuracy of data needed to produce	The arrangement and motion of atoms vary in characteristic ways, depending on the	one scale may fail or
reliable measurements and consider	substance and its current state (e.g., solid, liquid).	need revision when
limitations on the precision of the	The charged substructure of an atom connects to the concepts of attraction and repulsion	information from
data (e.g., number of trials, cost,	between electric charges at the atomic scale.	smaller or larger scales
risk, time), and refine the design	The interactions of the electric charges at the atomic scale explain the structure, properties,	is introduced.
accordingly.	and transformations of matter.	
Plan an investigation individually		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and collaboratively to produce data		
to serve as the basis for evidence,		
and in the design: decide on types,		
how much, and accuracy of data		
needed to produce reliable		
measurements.		
Revise an investigation individually		
and collaboratively to produce data		
to serve as the basis for evidence.		
Conduct an investigation		
individually and collaboratively to		
produce data to serve as the basis		
for evidence.		

Clarificatio	n Statement
	Examples of evaluation and refinement could include determining the success
Dhycical Science	of a device at protecting an object from damage such as, but not limited to,
Physical Science	impact resistant packaging and modifying the design to improve it. Emphasis is
	on qualitative evaluations.
	Examples of evaluation and refinement could include determining the success
	of the device at protecting an object from damage and modifying the design to
Chemistry	improve it by applying the impulse-momentum theorem. Examples of a device
	could include a football helmet or an airbag. Emphasis is on qualitative
	evaluations and/or algebraic manipulations.

Performance Expectation and Louisiana Connectors

HS-PS1-4 Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.

LC-HS-PS1-4a Determine whether energy is released or absorbed in a chemical reaction system using various types of models (e.g., drawings, graphs, etc.).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	A stable molecule has less energy than the same set of atoms separated; one must provide at	Changes of energy and
experiences and progresses to using,	least this energy in order to take the molecule apart. (HS.PS1A.d)	matter in a system can
synthesizing, and developing models		be described in terms of
to predict and show relationships	Matter can be broken apart and rearranged to form new compounds/substances.	energy and matter flows
among variables between systems	Forces between atoms that cause them to form molecules (via chemical bonds), which range	into, out of, and within
and their components in the natural	in size from two to thousands of atoms.	that system.
and designed worlds.	The energy required to break apart compound is equal or greater to the energy of its	
 Develop, revise, and/or use a 	formation.	The processes of energy
model based on evidence to		transformation and
illustrate and/or predict the	CHEMICAL REACTIONS	energy transfer can be
relationships between systems or	Chemical processes, their rates, and whether or not energy is stored or released can be	used to understand the
between components of a system.	understood in terms of the collisions of molecules and the rearrangements of atoms into new	changes that take place
	molecules, with consequent changes in the sum of all bond energies in the set of molecules	in physical systems.
Develop or use a model to identify	that are matched by changes in kinetic energy. (HS.PS1B.a)	
and describe the components of a		
system.	The total energy change of the chemical reaction system is matched by an equal but	
Develop or use a model to identify	opposite change of energy in the surroundings.	
and describe the relationships	The properties of the macromolecules depend on the properties of the molecules used in	
between the components of a	their formation.	
system.	Any chemical process involves a change in chemical bonds and the related bond energies	
Develop or use a model to predict	and thus in the total chemical binding energy.	
relationships between systems or	This change is matched by a difference between the total kinetic energy of the set of	
within a system.	reactant molecules before the collision and that of the set of product molecules after the	
Identify that models can help	collision (conservation of energy).	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		
systems or within a system.		

Clarification Statement
Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and
diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.

Performance Expectation and Louisiana Connectors

HS-PS1-5 Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.

LC-HS-PS1-5a Identify the effects of changing the temperature of the reacting particles at the rate at which a simple reaction (i.e., two reactants) occurs using a model (e.g., a table of data) of the number and energy of collisions between particles.

LC-HS-PS1-5b Identify the effects of changing the concentration of the reacting particles at the rate at which a simple reaction (i.e., two reactants) occurs using a model (e.g., a table of data) of the number and energy of collisions between particles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	CHEMICAL REACTIONS	PATTERNS
designing solutions: Constructing	Chemical processes, their rates, and whether or not energy is stored or released can be	Different patterns may
explanations (science) and designing	understood in terms of the collisions of molecules and the rearrangements of atoms into new	be observed at each of
solutions (engineering) in 9-12	molecules, with consequent changes in the sum of all bond energies in the set of molecules	the scales at which a
builds on K-8 experiences and	that are matched by changes in kinetic energy. (HS.PS1B.a)	system is studied and
progresses to explanations and		can provide evidence for
designs that are supported by	The total energy change of the chemical reaction system is matched by an equal but	causality in explanations
multiple and independent student-	opposite change of energy in the surroundings.	of phenomena.
generated sources of evidence	The properties of the macromolecules depend on the properties of the molecules used in	
consistent with scientific ideas,	their formation.	Patterns can be used to
principles, and theories.	Any chemical process involves a change in chemical bonds and the related bond energies	explain phenomena.
 Apply scientific ideas, principles, 	and thus in the total chemical binding energy.	Different patterns can
and/or evidence to provide an	This change is matched by a difference between the total kinetic energy of the set of	be observed at different
explanation of phenomena and	reactant molecules before the collision and that of the set of product molecules after the	scales (micro and
solve design problems, taking into	collision (conservation of energy).	macro) in a system.
account possible unanticipated		Classifications used at
effects.		one scale may fail or
		need revision when
Apply scientific ideas to provide an		information from
explanation of phenomena taking		smaller or larger scales
into account possible unanticipated		is introduced.
effects.		
Apply scientific ideas to solve		
design problems, taking into		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
account possible unanticipated		
effects.		
Apply scientific principles to provide		
an explanation of phenomena		
taking into account possible		
unanticipated effects.		
Apply scientific principles to solve		
design problems, taking into		
account possible unanticipated		
effects.		
Apply scientific evidence to provide		
an explanation of phenomena		
taking into account possible		
unanticipated effects.		
Apply scientific evidence to solve		
design problems, taking into		
account possible unanticipated		
effects.		

Clarification Statement

Student reasoning should focus on the number and energy of collisions between molecules. Emphasis is on simple reactions in which there are only two reactants; evidence from temperature, concentration, and rate data; and qualitative relationships between rate and temperature.

Performance Expectation and Louisiana Connectors

HS-PS1-6 Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium. LC-HS-PS1-6a Identify a change in one variable (i.e., temperature, concentration, pressure) of a chemical equation that would produce increased amounts of products at equilibrium.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	CHEMICAL REACTIONS	STABILITY AND CHANGE
designing solutions: Constructing	In many situations, a dynamic and condition-dependent balance between a reaction and the	Much of science deals
explanations (science) and designing	reverse reaction determines the numbers of all types of molecules present. (HS.PS1B.b)	with constructing
solutions (engineering) in 9-12		explanations of how
builds on K-8 experiences and	A system at equilibrium appears stable at the macroscopic level.	things change and how
progresses to explanations and	The speeds at which a reaction and its reverse reaction occur determines the numbers of all	they remain stable.
designs that are supported by	types of reactants and products present in a system. (Sometimes they are not balanced.)	
multiple and independent student-	Reversible reactions will reach an equilibrium point where the concentrations of the	Science deals with
generated sources of evidence	reactants and products will no longer change.	constructing
consistent with scientific ideas,	The balance between a reaction and the reverse reaction determines the numbers of all	explanations of how
principles, and theories.	types of molecules present.	things change.
 Design, evaluate, and/or refine a 		Science deals with
solution to a complex real-world	OPTIMIZING THE DESIGN SOLUTION	constructing
problem, based on scientific	Criteria may need to be broken down into simpler ones that can be approached	explanations of how
knowledge, student-generated	systematically, and decisions about the priority of certain criteria over others (tradeoffs) may	things remain stable.
sources of evidence, prioritized	be needed (secondary). (HS.ETS1C.a)	
criteria, and tradeoff considerations.		
	It is important to prioritize the benefits and costs of the design of a solution to a problem.	
Design a solution to a complex real-	The decision as to which criteria are critical and which ones can be traded off is a judgment	
world problem, based on scientific	based on the situation and the needs of the system.	
knowledge, student-generated		
sources of evidence, prioritized		
criteria, and tradeoff		
considerations.		
Evaluate a solution to a complex		
real-world problem, based on		
scientific knowledge, student-		

onent Cards Chemistry

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
generated sources of evidence,		
prioritized criteria, and tradeoff		
considerations.		
Refine a solution to a complex real-		
world problem, based on scientific		
knowledge, student-generated		
sources of evidence, prioritized		
criteria, and tradeoff		
considerations.		
Refine a solution to a complex real- world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.		

Clarification Statement

Emphasis is on the application of Le Chatelier's Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.

Performance Expectation and Louisiana Connectors

HS-PS1-7 Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. LC-HS-PS1-7a Identify a chemical equation, and identify the reactants and products which support the claim that matter (i.e., atoms) is neither created or destroyed in a chemical reaction.

LC-HS-PS1-7b Identify a mathematical representation (e.g., table, graph) or pictorial depictions that illustrates the claim that mass is conserved during a chemical reaction.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	CHEMICAL REACTIONS	ENERGY AND MATTER
computational thinking:	The fact that atoms are conserved, together with knowledge of the chemical properties of the	The total amount of
Mathematical and computational	elements involved, can be used to describe and predict chemical reactions. (HS.PS1B.c)	energy and matter in
thinking in 9-12 builds on K-8		closed systems is
experiences and progresses to using	A chemical reaction is the process in which substances undergo chemical changes that	conserved.
algebraic thinking and analysis, a	results in the formation of new substances.	
range of linear and nonlinear	Atoms are conserved in chemical reactions.	When materials
functions, including computational	Predicting involves making an inference about a future event based on evidence.	interact within a closed
tools for statistical analysis to	An element's chemical and physical properties can be predicted knowing only its position on	system, the total mass
analyze, represent, and model data.	the periodic table.	of the system remains
Simple computational simulations	The periodic table can be used to predict the outcome of chemical reactions.	the same.
are created and used based on		When materials
mathematical models of basic		interact within a closed
assumptions.		system, energy may
• Use mathematical, computational,		change forms, but the
and/or algorithmic representations		total amount of energy
of phenomena or design solutions to		within the system
describe and/or support claims		remains the same.
and/or explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
design solutions to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement		
Physical Science	Emphasis is on using mathematical ideas to communicate the relationship between masses of reactants and products as well as balancing chemical equations.	
Chemistry	Emphasis is on using mathematical ideas as they relate to stoichiometry to communicate the proportional relationships between masses of atoms in the reactants and the products, and the translation of these relationships to the macroscopic scale using the mole as the conversion from the atomic to the	

Clarification Statement	
	macroscopic scale. Emphasis is on assessing students' use of mathematical
	thinking and not on memorization and rote application of problem-solving
	techniques.

Chemistry <

Performance Expectation and Louisiana Connectors

HS-PS1-8 Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

LC-HS-PS1-8a Identify models that illustrate nuclear processes (i.e., fusion, fission, and radioactive decays), involve the release or absorption of energy. LC-HS-PS1-8b Contrast changes during the processes of alpha, beta, or gamma radioactive decay using graphs or pictorial depictions of the composition of the nucleus of the atom and the energy released.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	NUCLEAR PROCESSES	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve	In nuclear processes,
experiences and progresses to using,	release or absorption of energy. The total number of neutrons plus protons does not change	atoms are not
synthesizing, and developing models	in any nuclear process. (HS.PS1C.a)	conserved, but the total
to predict and show relationships		number of protons plus
among variables between systems	Fission, fusion, and radioactive decay (alpha, beta, and gamma) are nuclear processes.	neutrons is conserved.
and their components in the natural	Nuclear fission and fusion reactions release energy.	
and designed world(s).	In fission reactions, an atom is split into two or more smaller atoms.	The total number of
 Develop, revise, and/or use a 	In fusion reactions, two smaller atoms fuse together to create a heavier atom.	protons plus neutrons is
model based on evidence to	When a nuclear process takes place, radioactive particles and/or rays may be produced.	the same before and
illustrate and/or predict the	Radioactive decay is the breakdown of an atomic nucleus resulting in the release of energy	after nuclear processes
relationships between systems or	and matter from the nucleus.	occur.
between components of a system.	The total number of neutrons plus protons is the same both before and after the nuclear process of radioactive decay.	
Develop or use a model to identify	Typically nuclear processes release much more energy per atom involved than do chemical	
and describe the components of a	processes.	
system.	The energy that is released or absorbed during nuclear processes are narmful to numan	
Develop or use a model to identify	tissues.	
and describe the relationships		
between the components of a		
system.		
Develop or use a model to predict		
relationships between systems or		
within a system.		
Identify that models can help		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		
systems or within a system.		

Clarification Statement		
	Emphasis is only on simple qualitative models, such as pictures or diagrams,	
Physical Science	and on the scale of energy released in nuclear processes relative to other kinds	
	of transformations. Radioactive decay focus is on its relationship to half-life.	
	Emphasis is on simple qualitative models, such as pictures or diagrams, and on	
Chemistry	the scale of energy released in nuclear processes relative to other kinds of	
	transformations. Emphasis is on alpha, beta, and gamma radioactive decays.	

Performance Expectation and Louisiana Connectors

HS-PS2-6 Communicate scientific and technical information about why the atomic-level, subatomic-level, and/or molecular level structure is important in the functioning of designed materials.

LC-HS-PS2-6a Communicate that different materials have different molecular structures and properties which determine different functioning of the material (e.g., flexible, but durable).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	STRUCTURE AND PROPERTIES OF MATTER	STRUCTURE AND
communicating information:	The structure and interactions of matter at the macro scale are determined by electrical	FUNCTION
Obtaining, evaluating, and	forces within and between atoms. (HS.PS1A.c)	Investigating or
communicating information in 9-12		designing new systems
builds on K-8 experiences and	Electrical attractions and repulsions between charged particles (i.e., atomic nuclei and	or structures requires a
progresses to evaluating the validity	electrons) in matter explain the structure of atoms and the forces between atoms that cause	detailed examination of
and reliability of the claims,	them to form compounds.	the properties of
methods, and designs.	The varied properties (e.g., hardness, conductivity) of the materials can be understood in	different materials, the
 Communicate scientific and/or 	terms of the atomic and molecular constituents and the forces within and between them.	structures of different
technical information or ideas (e.g.,		components, and
about phenomena and/or the	TYPES OF INTERACTIONS	connections of
process of development and the	Attraction and repulsion between electric charges at the atomic scale explain the structure,	components to reveal
design and performance of a	properties, and transformations of matter, as well as the contact forces between material	its function and/or solve
proposed process or system) in	objects. (HS.PS2B.c)	a problem.
multiple formats (i.e., orally,		
graphically, textually,	An atom's electron structure determines its physical and chemical properties.	Designing new
mathematically).	The arrangement and motion of atoms vary in characteristic ways, depending on the	structures/systems
	substance and its current state (e.g., solid, liquid).	requires knowledge of
Communicate scientific information	The charged substructure of an atom connects to the concepts of attraction and repulsion	the properties (e.g.,
in multiple formats (i.e., orally,	between electric charges at the atomic scale.	rigidity and hardness)
graphically, textually,	The interactions of the electric charges at the atomic scale explain the structure, properties,	of the materials needed
mathematically).	and transformations of matter.	for specific parts of the
Communicate technical information		structure.
in multiple formats (i.e., orally,	ELECTROMAGNETIC RADIATION	Designing new
graphically, textually,	Photoelectric materials emit electrons when they absorb light of a high-enough frequency.	structures/systems
mathematically).	(HS.PS4B.c)	requires knowledge of

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Communicate scientific ideas in		the structures of
multiple formats (i.e., orally,	The photoelectric effect is the movement of electrons in a substance when light is shined on	different components.
graphically, textually,	it. This movement causes an electric current to flow.	Designing a new
mathematically).	Some materials (e.g., solar panels) absorb photons of light and release electrons that can be	structure requires a
	transformed into an electric current.	detailed examination of
		the connections of
	Atoms of each element emit and absorb characteristic frequencies of light. These	components to reveal
	characteristics allow identification of the presence of an element, even in microscopic	its function.
	quantities. (HS.PS4B.d)	Designing a new
		structure requires a
	When the atoms of an element absorb energy, the electrons make transitions from lower	detailed examination of
	energy levels to higher energy levels.	the connections of
	When electrons subsequently return from higher energy levels to lower energy levels,	components to reveal
	energy is released predominantly in the form of electromagnetic radiation.	any problems.
	If emitted photons are in the visible region of the spectrum, they may be perceived different	
	colors.	
	The result is called a line emission spectrum and can serve as a 'fingerprint' of the element	
	to which the atoms belong.	

Clarification Statement

Emphasis is on the attractive and repulsive forces that determine the functioning of the material. Examples could include why electrically conductive materials are often made of metal, fireworks and neon signs are made of certain elements, flexible but durable materials are made up of long chained molecules, and pharmaceuticals are designed to interact with specific receptors.

Performance Expectation and Louisiana Connectors

HS-PS3-1 Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

LC-HS-PS3-1a Identify a model showing the change in the energy of one component in a system compared to the change in energy of another component in the system.

LC-HS-PS3-1b Identify a model showing the change in energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	DEFINITIONS OF ENERGY	SYSTEMS AND SYSTEM
computational thinking:	Energy is a quantitative property of a system that depends on the motion and interactions of	MODELS
Mathematical and computational	matter and radiation within that system. That there is a single quantity called energy is due to	Models can be used to
thinking in 9-12 builds on K-8	the fact that a system's total energy is conserved, even as, within the system, energy is	predict the behavior of a
experiences and progresses to using	continually transferred from one object to another and between its various possible forms.	system, but these
algebraic thinking and analysis, a	(HS.PS3A.a)	predictions have limited
range of linear and nonlinear		precision and reliability
functions including computational	Energy is the ability to do work or cause change.	due to the assumptions
tools for statistical analysis to	Energy transforms from one form to another, but these transformations are not always	and approximations
analyze, represent, and model data.	reversible.	inherent in models.
Simple computational simulations	A system's total energy is conserved regardless of the transfers within the system.	
are created and used based on	The total energy of a system changes only by the amount of energy transferred into and out	Models can be valuable
mathematical models of basic	of the system.	in predicting a system's
assumptions.		behaviors.
 Create and/or revise a 	CONSERVATION OF ENERGY AND ENERGY TRANSFER	Any model of a system
computational model or simulation	Conservation of energy means that the total change of energy in any system is always equal	incorporates
of a phenomenon, designed device,	to the total energy transferred into or out of the system. (HS.PS3B.a)	assumptions and
process, or system.		approximations.
	The law of conservation of energy states that when one form of energy is converted to	As a result, model-
Create a computational model of a	another, no energy is destroyed in the process.	based predictions have
phenomenon.	According to the law of conservation of energy, energy cannot be created or destroyed.	limited precision and
Revise a computational model of a	The total change of energy in any system is always equal to the total energy transferred	reliability.
phenomenon.	into or out of the system.	
Create a simulation of a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
phenomenon.	Energy cannot be created or destroyed, but it can be transported from one place to another	
Revise a simulation of a	and transferred between systems. (HS.PS3B.b)	
phenomenon.		
Create a computational model of a	Energy cannot be created or destroyed.	
designed device.	Energy can be transferred from one object to another and can be transformed from one	
Revise a computational model of a	form to another.	
designed device.	The processes of energy transformation and energy transfer can be used to understand the	
Create a simulation of a designed	changes that take place in physical systems.	
device.		
Revise a simulation of a designed	Mathematical expressions allow the concept of conservation of energy to be used to predict	
device.	and describe system behavior. These expressions quantify how the stored energy in a system	
Create a computational model of a	depends on its configuration (e.g., relative positions of charged particles, compression of a	
process.	spring) and how kinetic energy depends on mass and velocity. (HS.PS3B.c)	
Revise a computational model of a		
process.	The amount of energy available in a system is mathematically calculable.	
Create a simulation of a process.	Mathematical expressions quantify forms of energy in a system.	
Revise a simulation of a process.	These forms can be grouped into types of energy that are associated with the motion of	
Create a computational model of a	mass (kinetic energy), and types of energy associated with the position of mass and energy	
system.	fields (potential energy).	
Revise a computational model of a		
system.	The availability of energy limits what can occur in any system. (HS.PC3B.d)	
Create a simulation of a system.		
Revise a simulation of a system.	The amount of energy available in a system determines what the system is capable of doing.	

Clarification Statement		
	Emphasis is on explaining the meaning of mathematical expressions used in	
Physical Science	the model. Focus is on basic algebraic expression or computations, systems of	
	two or three components, and thermal energy.	
	Emphasis is on explaining the meaning of mathematical expressions used in	
Chemistry	the model. Focus is on basic algebraic expression or computations; systems of	

Clarification Statement		
	two or three components; and thermal energy, kinetic energy, and/or the	
	energies in gravitational, magnetic, or electric fields.	

Performance Expectation and Louisiana Connectors

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy. LC-HS-PS3-3a Identify the forms of energy that will be converted by a device that converts one form of energy into another form of energy. LC-HS-PS3-3b Identify steps in a model of a device showing the transformations of energy that occur (e.g., solar cells, solar ovens, generators, turbines). LC-HS-PS3-3c Describe constraints to the design of the device which converts one form of energy into another form of energy (e.g., cost or efficiency of energy conversion).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	Changes of energy and
solutions: Constructing explanations	light, and thermal energy. (HS.PS3A.b)	matter in a system can
(science) and designing solutions		be described in terms of
(engineering) in 9-12 builds on K-8	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	energy and matter flows
experiences and progresses to		into, out of, and within
explanations and designs that are	ENERGY IN CHEMICAL PROCESSES	that system.
supported by multiple and	Although energy cannot be destroyed, it can be converted to other forms—for example, to	
independent student-generated	thermal energy in the surrounding environment. (HS.PS3D.a)	The processes of energy
sources of evidence consistent with		transformation and
scientific ideas, principles, and	A system does not destroy energy when carrying out any process.	energy transfer can be
theories.	When carrying out a process, most often some or all of the energy has been transferred to	used to understand the
 Design, evaluate, and/or refine a 	heat the surrounding environment.	changes that take place
solution to a complex real-world	Energy can be transformed into other energy forms.	in physical systems.
problem, based on scientific	To produce energy typically means to convert some stored energy into a desired form.	
knowledge, student-generated		
sources of evidence, prioritized	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
criteria, and trade-off	Criteria and constraints also include satisfying any requirements set by society, such as taking	
considerations.	issues of risk mitigation into account, and they should be quantified to the extent possible	
	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
Design a solution to a complex real-		
world problem, based on scientific	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
knowledge, student-generated	the design of the device.	
sources of evidence, prioritized		
criteria, and trade-off		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
considerations.	The social, economic, and political forces of a society have a significant influence on what	
Evaluate a solution to a complex	science and technology solutions are implemented.	
real-world problem, based on		
scientific knowledge, student-		
generated sources of evidence,		
prioritized criteria, and trade-off		
considerations.		
Refine a solution to a complex real-		
world problem, based on scientific		
knowledge, student-generated		
sources of evidence, prioritized		
criteria, and trade-off		
considerations.		

Clarification Statement		
	Examples of phenomena at the macroscopic scale could include the conversion	
Physical Science	of potential energy to kinetic and thermal energy. Examples of models could	
	include diagrams, drawings, descriptions, and computer simulations.	
	Examples of phenomena at the macroscopic scale could include the conversion	
Chamistry	of potential energy to kinetic and thermal energy, and the energy stored	
Chemistry	between two electrically-charged plates. Examples of models could include	
	diagrams, drawings, descriptions, and computer simulations.	

Performance Expectation and Louisiana Connectors

HS-PS3-4 Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). *LC-HS-PS3-4a Identify the temperatures of two liquids of different temperature before mixing and after combining to show uniform energy distribution. LC-HS-PS3-4b Investigate the transfer of thermal energy when two substances are combined within a closed system.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CONSERVATION OF ENERGY AND ENERGY TRANSFER	SYSTEMS AND SYSTEM
investigations: Planning and	Energy cannot be created or destroyed, but it can be transported from one place to another,	MODELS
carrying out investigations to	transformed into other forms, and transferred between systems. (HS.PS3B.b)	When investigating or
answer questions (science) or test		describing a system, the
solutions to problems (engineering)	Energy cannot be created or destroyed.	boundaries and initial
in 9-12 builds on K-8 experiences	Energy can be transferred from one object to another and can be transformed from one	conditions of the system
and progresses to include	form to another.	need to be defined and
investigations that provide evidence	The processes of energy transformation and energy transfer can be used to understand the	their inputs and outputs
for and test conceptual,	changes that take place in physical systems.	analyzed and described
mathematical, physical, and		using models.
empirical models.	Uncontrolled systems always evolve toward more stable states—that is, toward more uniform	
 Plan and conduct an investigation 	energy distribution (e.g., water flows downhill, objects hotter than their surrounding	Making models help
individually and collaboratively to	environment cool down). (HS.PS3B.e)	people understand
produce data to serve as the basis		things they cannot
for evidence, and in the design:	Energy can change from one kind to another.	observe directly.
decide on types, how much, and	When two substances (e.g., water or air) of different temperatures are combined (within a	Scientists use models to
accuracy of data needed to produce	closed system), the result will be a more uniform temperature (energy) distribution in the	represent things that
reliable measurements and consider	system.	are either very large or
limitations on the precision of the		very small.
data (e.g., number of trials, cost,	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	Any model of a system
risk, time), and refine the design	Although energy cannot be destroyed, it can be converted to less useful other forms—for	incorporates
accordingly.	example, to thermal energy in the surrounding environment. (HS.PS3D.a)	assumptions and
		approximations (e.g.,
Plan an investigation individually	Energy can be transformed into other energy forms.	the boundaries and
and collaboratively to produce data		initial conditions of the

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements. Revise an investigation individually and collaboratively to produce data to serve as the basis for evidence. Conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence.	When "producing" or "using" energy, most often some or all of the energy has been transferred to heat the surrounding environment.	system, inputs and outputs). It is critical to be aware of a system's physical, chemical, biological, and social interactions and how they affect the model's reliability and precision.

Clarification Statement		
	Emphasis is on analyzing data from student investigations and using	
	mathematical thinking appropriate to the subject to describe the energy	
Physical Science, Chemistry, and Physics	changes quantitatively and conceptually. Examples of investigations could	
	include mixing liquids at different initial temperatures or adding objects at	
	different temperatures to water.	

Performance Expectation and Louisiana Connectors

HS-PS3-6 Evaluate the validity and reliability of claims in published materials about the viability of nuclear power as a source of alternative energy relative to other forms of energy (e.g., fossil fuels, wind, solar, geothermal).

LC-HS-PS3-6a Identify the relationship between increasing energy demand and the technologies developed to meet these needs.

LC-HS-PS3-6b Identify an alternative energy system with minimal social and environmental consequences.

LC-HS-PS3-6c Evaluate a claim about nuclear energy as an alternative source of energy as opposed to other forms of energy.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	NUCLEAR PROCESSES	ENERGY AND MATTER
communicating information:	Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve	In nuclear processes,
Obtaining, evaluating, and	release or absorption of energy. The total number of neutrons plus protons does not change	atoms are not
communicating information in 9-12	in any nuclear process. (HS.PS1C.a)	conserved, but the total
builds on K-8 experiences and		number of protons plus
progresses to evaluating the validity	Fission, fusion, and radioactive decay (alpha, beta, and gamma) are nuclear processes.	neutrons is conserved.
and reliability of the claims,	Nuclear fission and fusion reactions release energy.	
methods, and designs.	In fission reactions, an atom is split into two or more smaller atoms.	The total number of
• Evaluate the validity and reliability	In fusion reactions, two smaller atoms fuse together to create a heavier atom.	nuclear particles are the
of and/or synthesize multiple claims,	When a nuclear process takes place, radioactive particles and/or gamma radiation may be	same both before and
methods, and/or designs that	produced.	after the nuclear
appear in scientific and technical	Radioactive particles or decay occur when an unstable atomic nucleus loses energy by	process, although the
texts or media reports, verifying the	emitting radiation.	total number of protons
data when possible.	The total number of neutrons plus protons is the same both before and after the nuclear	and the total number of
Evaluate the validity and valiability	process of radioactive decay.	different before and
Evaluate the valianty and reliability	Typically nuclear processes release much more energy per atom involved than do chemical	affer
of claims that appear in scientific	processes.	ajter.
drite when possible	the energy that is released of absorbed during nuclear processes are narmjul to numan	
aata when possible.	tissues.	
Evaluate the validity and reliability		
of claims that appear in media	DEVELOPING POSSIBLE SOLUTIONS	
reports, verifying the data when	When evaluating solutions it is important to take into account a range of constraints including	
possible.	cost, safety, reliability and aesthetics and to consider social, cultural and environmental	
Evaluate the validity and reliability	impacts. (HS.ETS1B.a)	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
of methods that appear in scientific		
and technical texts, verifying the	It is important to determine the full impact of the advantages and disadvantages when	
data when possible.	evaluating a solution.	
Evaluate the validity and reliability	The development of solutions is driven by the following factors: economical, political,	
of methods that appear in media	cultural, social, safety, and environmental.	
reports, verifying the data when		
possible.	NATURAL RESOURCES	
Evaluate the validity and reliability	All forms of energy production and other resource extraction have associated economic,	
of designs that appear in scientific	social, environmental, and geopolitical costs and risks as well as benefits. New technologies	
and technical texts, verifying the	and social regulations can change the balance of these factors. (HS.ESS3A.b)	
data when possible.		
Evaluate the validity and reliability	Energy production has associated economic, social, environmental, and geopolitical costs	
of designs that appear in media	and risks.	
reports, verifying the data when	Energy production also has associated economic, social, environmental, and geopolitical	
possible.	benefits.	
	Advances in technology can and advancement in science influence and drive each other	
	forward to help balance these factors.	

Clarification Statement

Emphasis is on the tradeoffs existing between the amount of energy produced, the types and amounts of pollution produced, safety, and cost. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias.

