

Performance Expectation and Louisiana Connectors

5-PS1-1 Develop a model to describe that matter is made of particles too small to be seen.

LC-5-PS1-1a Identify in a model (e.g., picture, diagram) which shows that all matter can be broken down into smaller and smaller pieces until they are too small to be seen by human eyes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION,
Modeling in 3-5 builds on K-2	Matter of any type can be subdivided into particles that are too small to see, but even then	AND QUANTITY
experiences and progresses to	the matter still exists and can be detected by other means. A model showing that gases are	Natural objects and/or
building and revising simple models	made from matter particles that are too small to see and are moving freely around in space	observable phenomena
and using models to represent	can explain many observations, including boiling water, the inflation and shape of a balloon,	exist from the very small
events and design solutions.	and the effects of air on larger particles or objects. (UE.PS1A.a)	to the immensely large
 Develop and/or use models to 		or from very short to
describe and/or predict phenomena.	Matter is anything that occupies space and has mass.	very long time periods.
	Everything around us (matter) is made up of particles that are too small to be seen.	
Models can be used to describe	Models may be used to gain an understanding of these tiny particles.	Natural processes vary
phenomena.	Matter that cannot be seen can be detected in other ways.	in size (very small to the
Models can be used to predict	Gas (air) has mass and takes up space.	immensely large).
phenomena.	Gas (air) particles, which are too small to be seen, can affect larger particles and objects.	Natural processes vary
	Gas particles, which freely move around in space, until they hit a material that keeps them	in time span (very short
	from moving further, thus trapping the gas (e.g., air inflating a basketball, an expanding	to very long).
	balloon).	Observable phenomena
		vary in size (very small
		to the immensely
		large).
		Observable phenomena
		vary in time span (very
		short to very long).

Clarification Statement Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, or evaporating salt water. Does not include atomic scale mechanism of evaporation and condensation or defining the unseen particles.

Performance Expectation and Louisiana Connectors

5-PS1-2 Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total amount of matter is conserved.

LC-5-PS1-2a Identify using measurements that the total weight of matter is conserved when it changes form.

LC-5-PS1-2b Identify using measurements that the total weight of matter is conserved before and after they are heated, cooled, or mixed.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	STRUCTURE AND PROPERTIES OF MATTER	ENERGY AND MATTER
computational thinking:	The amount of mass in matter is conserved when it changes form, even in transitions in which	Matter flows and cycles
Mathematical and computational	it seems to vanish. (UE.PS1A.b)	can be tracked in terms
thinking in		of mass of the
3-5 builds on K-2 experiences and	Matter can change in different ways.	substances before and
progresses to extending quantitative	Regardless of the type of change, none of the particles are lost, and the total mass of the	after a process occurs.
measurements to a variety	system is the same.	The total mass of the
of physical properties and using	The mass of substances are the same before and after they change form (e.g., heating,	substances does not
computation and mathematics to	cooling, or mixing).	change. This is what is
analyze data and compare		meant by conservation
alternative design solutions.	CHEMICAL REACTIONS	of matter. Matter is
 Describe, measure, estimate, 	When two or more different substances are mixed, a new substance with different properties	transported into, out of,
and/or graph quantities (e.g., area,	may be formed. (UE.PS1B.a)	and within systems.
volume, time) to address scientific		
and engineering questions and	When substances are mixed, the change can result in a new substance.	Matter flows and cycles
problems.	Substances change during a chemical reaction.	(e.g., water going back
	A new substance may have different properties than the individual substances from which it	and forth between
Mathematics can be used to	was made.	Earth's atmosphere and
represent physical variables and		its surface).
their relationships.	No matter what reaction or change in properties occurs, the total mass of the substances	Matter can change, but,
Tools can be used for observing,	does not change. (UE.PS1B.b)	the total mass of the
describing, measuring, recording,		substances is the same.
and graphing data.	In a closed system, the total mass will not change.	Matter is conserved.
Descriptions can be used to address	During a physical or chemical change, the total mass of the substances do not change.	Matter can be
problems (scientific and	After a change, the total mass of the new substance(s) will be the same as the total mass of	

engineering).the beginning substances.transported into, outMeasurements can be used to address problems (scientific and engineering).The total mass of matter is conserved after heating, cooling or mixing substances.and within systems.Estimates can be used to address problems (scientific andHe beginning substancesand within systems.	Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
engineering). Graphing quantities (e.g., area, volume, time) can be used to address problems (scientific and engineering).	engineering). Measurements can be used to address problems (scientific and engineering). Estimates can be used to address problems (scientific and engineering). Graphing quantities (e.g., area, volume, time) can be used to address problems (scientific and engineering).	the beginning substances. The total mass of matter is conserved after heating, cooling or mixing substances.	transported into, out of, and within systems.

Clarification Statement

Examples of chemical changes includes reactions that produce new substances with new properties. Examples of physical changes could include phase changes, dissolving, or mixing.

Performance Expectation and Louisiana Connectors

5-PS1-3 Make observations and measurements to identify materials based on their properties.

LC-5-PS1-3a Identify that materials can be classified based on a variety of observable physical properties (e.g., shape, texture, buoyancy, color, magnetism, solubility).

LC-5-PS1-3b Classify materials (e.g., shape, texture, buoyancy, color, magnetism, solubility) by measurable physical properties.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION,
Investigations: Planning and	Measurements of a variety of properties can be used to identify materials. (UE.PS1A.c)	AND QUANTITY
carrying out investigations to		Standard units are used
answer questions	Everything around us has unique properties that can be used to identify them, such as what	to measure and describe
(science) or test solutions	color they are, how hard they are, if they reflect light, whether they conduct electricity or	physical quantities such
(engineering) to problems in 3-5	heat, whether they are magnetic, and whether they dissolve in water.	as mass, time,
builds on K-2 experiences and	Properties can be used to identify materials.	temperature, and
progresses to include investigations	Properties can be measured.	volume.
that control variables and provide	Materials can be identified based on their observable and measurable properties.	
evidence to support explanations or	Properties of materials may include color, hardness, reflectivity, electrical conductivity,	Physical quantities
design solutions.	thermal conductivity, response to magnetic forces, and solubility.	(mass, time,
 Make observations and/or 	Tools such as graduated cylinders, balances, rulers, magnifiers, simple circuits, and magnets	temperature, and
measurements to produce data to	are used to study the physical properties.	volume) can be
serve as the basis for evidence for		measured.
an explanation of a phenomenon or		Physical quantities are
test a design solution.		measured using
		standard units.
Make observations to collect data.		Measurements of
Make measurements to collect		physical properties can
data.		be used to describe
Use data to as evidence for an		physical quantities.
explanation of a phenomenon.		

Clarification Statement

Examples of materials to be identified could include baking soda and other powders, metals, minerals, or liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, or solubility; density is not intended to be used as an identifiable property. No attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.

Performance Expectation and Louisiana Connectors

5-PS1-4 Conduct an investigation to determine whether the mixing of two or more substances results in new substances. *LC-5-PS1-4a Identify that when two or more different substances are mixed, a new substance with different properties may be formed. LC-5-PS1-4b Identify the changes that occur when two or more substances are mixed using evidence provided from data.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CHEMICAL REACTIONS	CAUSE AND EFFECT
Investigations: Planning and	When two or more different substances are mixed, a new substance with different properties	Cause and effect
carrying out investigations to	may be formed. (UE.PS1B.a)	relationships are
answer questions		routinely identified,
or test solutions to problems in 3-5	When substances are mixed, a change can occur which results in a new substance.	tested, and used to
builds on K-2 experiences and	Substances change during a chemical reaction.	explain change.
progresses to include investigations	A new substance may have different properties than the individual substances from which it	
that control variables and provide	was made.	Cause and effect
evidence to support explanations or		relationships may be
design solutions.		identified.
 Plan and conduct an investigation 		Cause and effect
collaboratively to produce data to		relationships may be
serve as the basis for evidence,		tested.
using fair tests in which variables are		Cause and effect
controlled and the number of trials		relationships may be
considered.		used to explain change.
Plan investigations collaboratively		
to produce data to serve as the		
basis for evidence.		
conduct investigations		
conaboratively to produce data to		
Serve us the basis jor evidence.		
riun investigations conaboratively		
are controlled and the number of		
trials considered		
triais considerea.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Conduct investigations collaboratively using fair tests in which variables are controlled and the number of trials considered.		

Clarification Statement

Examples of interactions forming new substances can include mixing baking soda and vinegar. Examples of interactions not forming new substances can include mixing baking soda and water.

Performance Expectation and Louisiana Connectors

5-PS2-1 Support an argument that the gravitational force exerted by the Earth is directed down. *LC-5-PS2-1a Identify that the gravitational force exerted by Earth on objects is directed down.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	TYPES OF INTERACTIONS	CAUSE AND EFFECT
evidence: Engaging in argument	The gravitational force of Earth acting on an object near Earth's surface pulls that object	Cause and effect
from evidence in 3-5 builds on K-2	toward the planet's center. (UE.PS2B.c)	relationships are
experiences and progresses to		routinely identified,
critiquing the scientific explanations	Gravity is what makes things fall to Earth's center.	tested, and used to
or solutions proposed by peers by	Gravity is an invisible force.	explain change.
citing relevant evidence about the	Some forces (e.g., gravity) can make things move without touching them.	
natural and designed world(s)	Gravity is what makes things fall.	Cause and effect
 Construct and/or support an 	The gravitational pull of Earth always pulls down to the center of the planet.	relationships may be
argument with evidence, data,		identified.
and/or a model		Cause and effect
		relationships may be
Use evidence to construct an		tested.
argument.		Cause and effect
Use evidence to support an		relationships may be
argument.		used to explain change.
Use data to construct an argument.		
Use data to support an argument.		
Use a model to construct an		
argument.		
Use a model to support an		
argument.		

Clarification Statement

"Down" is a local description of the direction that points toward the center of the spherical Earth. Earth's mass causes objects to have a force on them that points toward the center of the Earth, "down". Support for arguments can be drawn from diagrams, evidence, and data that are provided. This does not include mathematical representation of gravitational force.

Performance Expectation and Louisiana Connectors

5-PS3-1 Use models to describe that energy in animals' food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

LC-5-PS3-1a Identify that the energy in animals' food was once energy from the sun.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	ENERGY AND MATTER
Modeling in 3-5 builds on K-2	The energy released from food was once energy from the sun that was captured by plants in	Energy can be
experiences and progresses to	the chemical process that forms plant matter (from air and water). (UE.PS3D.b)	transferred in various
building		ways and between
and revising simple models and	All of the energy (i.e., food) that sustains ecosystems comes from the sun.	objects.
using models to represent events	Energy from the sun is taken in by plants along with air and water and changed into food	
and design solutions.	for the plant.	Energy can be
 Develop and/or use models to 	Plants need the sun's energy to grow and survive.	transferred.
describe and/or predict phenomena.	Animals need food to provide materials and energy for life which they derive directly or	Energy can be
	indirectly from plants.	transferred between
Models can be used to describe		objects.
phenomena.	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	
Models can be used to predict	Food provides animals with the materials they need for body repair and growth and energy	
phenomena.	they need to maintain body warmth and for motion. (UE.LS1C.a)	
	All organisms require energy.	
	Animals depend on food for the materials they need to repair injuries.	
	Animals depend on food the energy they need to maintain body temperature.	
	Animals depend on food for the materials they need to grow and move.	

Clarification Statement

Examples of models could include diagrams or flowcharts.

Performance Expectation and Louisiana Connectors

5-LS1-1 Ask questions about how air and water affect the growth of plants.

LC-5-LS1-1a Identify that plants acquire material for growth chiefly from air and water, not from soil.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
problems: Asking questions	Plants acquire their material for growth chiefly from air and water. (UE.LS1C.b)	Matter is transported
(science) and defining problems		into, out of, and within
(engineering) in 3-5 builds on K-2	A plant receives the material it needs for growth from air and water.	systems.
experiences and progresses to	Plants need the sun's energy to grow and survive.	
specifying qualitative relationships.		Matter is anything that
 Ask questions that can be 		has mass and takes up
investigated and predict reasonable		space.
outcomes based on patterns such as		A system is an
cause and effect relationships.		organized group of
		components that
Scientific questions arise in a		interact.
variety of ways.		There are different
Ask scientific questions to which the		types of systems.
answers can be supported through		Matter can be
investigation.		transported into, out of,
Questions can be about the		and within systems.
prediction of outcomes based on		
cause and effect relationships.		

Clarification Statement

Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil. The chemical processes of photosynthesis and cellular respiration are not addressed at this grade level.

Performance Expectation and Louisiana Connectors

5-LS2-1 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. *LC-5-LS2-1a Identify a model that shows the movement of matter (e.g., plant growth, eating, composting) through living things.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	SYSTEMS AND SYSTEM
Modeling in 3-5 builds on K-2	The food of almost any kind of animal can be traced back to plants. Organisms are related in	MODELS
experiences and progresses to	food webs in which some animals eat plants for food and other animals eat the animals that	A system can be
building and revising simple models	eat plants. (UE.LS2A.a)	described in terms of its
and using models to represent		components and their
events and design solutions.	Plants are the base of most ecosystems.	interactions.
 Develop and/or use models to 	Some animals eat only plants for food.	
describe and/or predict phenomena.	Some animals eat other animals for food.	A system can be
	Some animals eat both plants and animals for food.	described in terms of its
Models can be used to describe		parts.
phenomena.	Some organisms, such as fungi and bacteria, break down dead organisms and therefore	A system can be
Models can be used to predict	operate as "decomposers." Decomposition eventually restores (recycles) some materials back	described in terms of
phenomena.	to the soil. (UE.LS2A.b)	how its parts interact.
	Decomposers break down dead plants and animals.	
	Decomposers recycle nutrients and material back into the soil to be used by plants again.	
	Organisms can survive only in environments in which their particular needs are met. A healthy	
	ecosystem is one in which multiple species of different types are each able to meet their	
	needs in a relatively stable web of life. (UE.LSZA.C)	
	Organisms live in ecosystems that meet their needs	
	In a healthy ecosystem, organisms are connected to the other components and rely on the	
	ather components to survive	
	Newly introduced species can damage the balance of an ecosystem. (UELS2A d)	
	Some changes to an ecosystem (i.e., introduction of a new species) can upset the balance of	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	an ecosystem.	
	CYCLES OF MATTER AND ENERGY TRANSFER IN ECOSYSTEMS Matter cycles between the air and soil and among plants, animals, decomposers, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (UE.LS2B.a)	
	Food and other materials are broken down and cycled between the air, plants, animals, and the soil. Living organisms depend on air and water from the environment. Living organisms release waste matter back to the environment.	

Clarification Statement Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems of the Earth not including molecular explanations.

0

Performance Expectation and Louisiana Connectors

5-ESS1-1 Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth. *LC-5-ESS1-1a Identify that the sun appears larger and brighter than other stars because the sun is much closer to Earth than other stars.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	THE UNIVERSE AND ITS STARS	SCALE, PROPORTION,
evidence: Engaging in argument	The sun is a star that appears larger and brighter than other stars because it is closer. Stars	AND QUANTITY
from evidence in 3-5 builds on K-2	range greatly in their distance from Earth. (UE.ESS1A.a)	Natural objects and/or
experiences and progresses to		observable phenomena
critiquing the scientific explanations	The sun is a star.	exist from the very small
or solutions proposed by peers by	The sun is the brightest object in Earth's sky.	to the immensely large
citing relevant evidence about the	Other stars are much farther from Earth.	or from very short to
 natural and designed world(s). Construct and/or support an 	Other stars appear dimmer and smaller than the sun because they are very far away from Earth.	very long time periods.
argument with evidence, data,		Natural processes vary
and/or a model.		in size (very small to the
		immensely large).
Use evidence to construct an		Natural processes vary
argument.		in time span (very short
Use evidence to support an		to very long).
argument.		Observable phenomena
Use data to construct an argument.		vary in size (very small
Use data to support an argument.		to the immensely
Use a model to construct an		large).
argument.		Observable phenomena
Use a model to support an		vary in time span (very
argument.		short to very long).

Clarification Statement

Examples include the relative distances of the stars, but not the sizes. It does not include other factors that affect apparent brightness (such as stellar masses, age, stage).

Performance Expectation and Louisiana Connectors

5-ESS1-2 Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

LC-5-ESS1-2a Describe similarities and differences in the timing of observable changes in shadows.

LC-5-ESS1-2b Describe similarities and differences in the timing of observable changes in day and night.

LC-5-ESS1-2c Describe similarities and differences in the timing of observable changes in the appearance of stars that are visible only in particular months.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	HISTORY OF PLANET EARTH	PATTERNS
Analyzing data in 3-5 builds on K-2	The orbits of Earth around the sun and of the moon around Earth, together with the rotation	Similarities and
experiences and progresses to	of Earth about an axis between its North and South poles, cause observable patterns. These	differences in patterns
introducing quantitative approaches	include: day and night, daily changes in the length and direction of shadows, and different	can be used to sort,
to collecting data and conducting	positions of the sun, moon, and stars at different times of the day, month, and year.	classify, communicate
multiple trials of qualitative	(UE.ESS1B.a)	and analyze simple rates
observations. When possible and		of change for natural
feasible, digital tools should be	Gravitational force from the sun keeps Earth in orbit around the sun, and the moon in orbit	phenomena and
used.	around Earth.	designed products.
 Represent data in tables and/or 	Earth rotates about its axis between the North and South poles.	
various graphical displays (bar	As Earth revolves (moves around the sun) and rotates (spins on its axis), changes such as the	Similarities and
graphs, pictographs and/or pie	movement of shadows can be observed.	differences in patterns
charts) to reveal patterns that	As Earth moves around the sun and rotates on its axis, changes such as patterns of night	can be used to sort
indicate relationships.	and day can be observed.	simple rates of change
	As Earth revolves (moves around the sun) and rotates (spins on its axis), changes such as	(natural phenomena
Use data tables to describe	nightly, monthly, and seasonal movements of the moon can be observed.	and designed products).
patterns that show relationships.	As Earth revolves (moves around the sun) and rotates (spins on its axis), changes such as	Similarities and
Use graphical displays (bar graphs,	nightly, monthly, and seasonal movements of the stars can be observed.	differences in patterns
pictographs and/or pie charts) to	Observable, predictable patterns of movement in the sun, Earth, moon system occur	can be used to classify
describe patterns that show	because of gravitational interaction and energy from the sun.	simple rates of change
relationships.		(natural phenomena
		and designed products).
		Similarities and
		differences in patterns

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
		can be used to analyze simple rates of change (natural phenomena and designed products).

Clarification Statement

Patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months; not including the causes of the seasons.

Performance Expectation and Louisiana Connectors

5-ESS2-1 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. *LC-5-ESS2-1a Describe that the Earth's major systems interact and affect Earth's surface materials and processes.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	EARTH MATERIALS AND SYSTEMS	SYSTEMS AND SYSTEM
Modeling in 3-5 builds on K-2	Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the	MODELS
experiences and progresses to	hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including	A system can be
building and revising simple models	humans). These systems interact in multiple ways to affect Earth's surface materials and	described in terms of its
and using models to represent	processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and	components and their
events and design solutions.	influences climate. Winds and clouds in the atmosphere interact with the landforms to	interactions.
 Develop and/or use models to 	determine patterns of weather. (UE.ESS2A.b)	
describe and/or predict phenomena.		A system can be
	Earth is a dynamic system resulting from interactions among the geosphere, hydrosphere,	described in terms of its
Models can be used to describe	atmosphere and biosphere.	parts.
phenomena.	All of Earth's features, everything on land (soil, sediments, rocks, and landforms), all the	A system can be
Models can be used to predict	water, and all living things on Earth interact with each other.	described in terms of
phenomena.	Earth's systems interact with each other.	how its parts interact.
	Earth's vast oceans support life and many ecosystems.	
	Earth's vast oceans shape the land (e.g., coasts).	
	Earth's vast oceans influence climate.	
	Coastal locations are often cooler in the summer and warmer in the winter due to the slow	
	temperature change of the ocean and winds that blow air onto land.	
	Clouds are shaped by winds and are made of small water droplets or ice crystals.	
	Earth's atmosphere is influenced by the surface features of the Earth creating weather.	
	Interactions between landforms and the atmosphere create weather patterns.	
	Weather changes daily and seasonally.	
	While the weather can change in just a few hours, climate takes hundreds, thousands, even	
	millions of years to change.	

Clarification Statement

Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.

Performance Expectation and Louisiana Connectors

5-ESS2-2 Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

LC-5-ESS2-2a Determine that the majority of water on Earth is found in the oceans as salt water and most of the Earth's fresh water is stored in glaciers.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	THE ROLES OF WATER IN EARTH'S SURFACE PROCESSES	SCALE, PROPORTION,
computational thinking:	Nearly all of Earth's available water is in the ocean. Most fresh water is in glaciers or	AND QUANTITY
Mathematical and computational	underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.	Standard units are used
thinking in 3-5	(UE.ESS2C.a)	to measure and describe
builds on K-2 experiences and		physical quantities such
progresses to extending quantitative	Most of Earth's water is found in oceans.	as mass, time,
measurements to a variety of	A small amount of freshwater is accessible to humans.	temperature, and
physical properties and using	Most freshwater is found in glaciers or underground.	volume.
computation and mathematics to	Streams, wetlands, and lakes contain only a small part of Earth's freshwater.	
analyze data and compare		Physical quantities
alternative design solutions.	Liquid water can become the gas form of water (water vapor) and liquid water can become a	(mass, time,
 Describe, measure, estimate, 	solid as ice. (UE.ESS2C.b)	temperature, and
and/or graph quantities (e.g., area,		volume) can be
volume, time) to address scientific	Water may undergo physical changes such as freezing (solid), melting (liquid), or	measured.
and engineering questions and	evaporating (water vapor).	Physical quantities are
problems.	Water moves from one place on Earth to another in a continuous cycle through the	measured using
	processes of evaporation, condensation, and precipitation.	standard units.
Mathematics can be used to		Measurements of
represent physical variables and		physical properties can
their relationships.		be used to describe
Tools can be used for observing,		physical quantities.
describing, measuring, recording,		
and graphing data.		
Descriptions can be used to address		
problems (scientific and		
engineering).		
Measurements can be used to		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
address problems (scientific and engineering).		
Estimates can be used to address problems (scientific and engineering). Graphing quantities (e.g., area, volume, time) can be used to address problems (scientific and engineering).		

Clarification Statement	
Examples include oceans, lakes, rivers, glaciers, ground water, and polar ice caps.	

Performance Expectation and Louisiana Connectors

5-ESS3-1 Generate and compare multiple solutions about ways individual communities can use science to protect the Earth's resources and environment. LC-5-ESS3-1a Identify ways people can help protect the Earth's resources and environment.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	HUMAN IMPACTS ON EARTH SYSTEMS	SYSTEMS AND SYSTEM
designing solutions: Constructing	Human activities in agriculture, industry, and everyday life have had major effects on the land,	MODELS
explanations (science) and designing	vegetation, streams, ocean and the atmosphere. But individuals and communities are doing	A system can be
solutions (engineering) in 3-5 builds	things to help protect Earth's resources and environments. (UE.ESS3C.a)	described in terms of its
on K-2 experiences and progresses		components and their
to the use of evidence in	People use a variety of plants and animals found throughout the world for food, clothing,	interactions.
constructing explanations that	and shelter.	
specify variables that describe and	The flow of river water can be affected by human activities.	A system can be
predict phenomena and in designing	Ground cover can be affected by human activities.	described in terms of its
multiple solutions to design	Land can be affected by human activities.	parts.
problems.	Humans use natural resources to meet their needs and wants.	A system can be
 Generate and compare multiple 	Some changes to ecosystems are due to humans using resources within the ecosystem.	described in terms of
solutions to a problem based on	Humans have had major effects on the land, vegetation, streams, ocean and the	how its parts interact.
how well they meet the criteria and	atmosphere.	
constraints of the design solution.	Human activities may cause pollution of air, water, and soil.	
	There are many ways for people to conserve natural resources and energy by recycling,	
A design solution must include	reducing and reusing.	
specific constraints and criteria for	There are many ways for people to conserve natural resources.	
desired qualities of the solution.		
Multiple solutions to a problem	DEVELOPING POSSIBLE SOLUTIONS	
may be developed.	Tests are often designed to identify failure points or difficulties, which suggest the elements	
Solutions can be compared.	of the design that need to be improved. (ETS.UE.1B.c)	
Comparisons should be based on		
how well each solution meets the	Tests can be carried out to identify failure points or difficulties.	
constraints and criteria of the	After testing, defects are identified.	
design.	Using information from testing, improvements to a solution to best solve a problem can be	
Design solutions can be revised and	determined.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
improved as part of the design		
process.		

Clarification Statement
Examples of solutions can include cleanup of oil spills, protecting against coastal erosion, or prevention of polluted runoff into waterways.

