

Performance Expectation and Louisiana Connectors

6-MS-PS1-1 Develop models to describe the atomic composition of simple molecules and extended structures. LC-6-MS-PS1-1a Identify a model that shows an atom's nucleus is made of protons and neutrons, and is surrounded by electrons.

LC-6-MS-PS1-1b Identify a model that shows individual atoms of the same or different types that repeat to form compounds (e.g., sodium chloride).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION,
Modeling in 6-8 builds on K-5 and	Substances are made from different types of atoms, which combine with one another in	AND QUANTITY
progresses to developing, using and	various ways. Atoms form molecules that range in size from two to thousands of atoms.	Time, space, and energy
revising models to describe, test,	(MS.PS1.A.a)	phenomena can be
and predict more abstract		observed at various
phenomena and design systems.	All matter is composed of tiny particles called atoms.	scales using models to
 Develop and/or use a model to 	Atoms are the basic unit of a chemical element.	study systems that are
predict and/or describe phenomena.	Substances are made from different types of atoms.	too large or too small.
	Atoms form molecules ranging from small to very complex structures.	
Models can be used to describe	A molecule is a group of atoms that are joined together and act as a single unit.	Phenomena can be
phenomena.	Molecules can contain as many as a billion atoms or as few as two.	observed at different
Models can be used to predict	The arrangement, motion, and interaction of these particles determine the three states of	scales (micro and
phenomena.	matter (solid, liquid, and gas).	macro) in a system.
		Phenomena can be
	Solids may be formed from molecules, or they may be extended structures with repeating	studied using models.
	subunits (e.g., crystals). (MS.PS1A.e)	Models can be used to
		explain time, space, and
	Solids have a definite volume and a definite shape.	energy phenomena.
	Solids may be formed from molecules.	
	Solids can be extended structures with repeating subunits.	
	Repeating subunits can create crystal structures.	
	Salt, sugar, sand, and snow are examples of crystalline solids.	

Clarification Statement

Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include carbon dioxide and water. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3-D models, or computer representations showing different molecules with different types of atoms.

Performance Expectation and Louisiana Connectors

6-MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects. LC-6-MS-PS2-1a Describe the motion of two colliding objects in terms of the strength of the force and the relationship of action and reaction forces given a model or scenario.

LC-6-MS-PS2-1b Develop a solution to a problem involving the motion of two colliding objects.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	FORCES AND MOTION	SYSTEMS AND SYSTEM
designing solutions: Constructing	For any pair of interacting objects, the force exerted by the first object on the second object is	MODELS
explanations (science) and designing	equal in strength to the force that the second object exerts on the first, but in the opposite	Models can be used to
solutions (engineering) in 6-8 builds	direction (Newton's third law). (MS.PS2A.a)	represent systems and
on K-5 experiences and progresses		their interactions—such
to include designing solutions	Forces can be used to transfer energy from one object to another.	as inputs, processes and
supported by multiple sources of	Force is required in order to change the speed or direction of an object's motion.	outputs—and energy,
evidence consistent with scientific	Whenever an object pushes or pulls another object, it gets pushed or pulled back in the	matter, and information
ideas, principles, and theories.	opposite direction with an equal force.	flows within systems.
 Apply scientific ideas or principles 	Forces are equal and opposite in magnitude or strength.	
to design, construct, and/or test a		Models can represent
design of an object, tool, process or	DEVELOPING POSSIBLE SOLUTIONS	systems and their
system.	A solution needs to be tested, to prove the validity of the design and then modified on the	interactions.
	basis of the test results in order to improve it. There are systematic processes for evaluating	In many systems there
To design an object, tool, process or	solutions with respect to how well they meet the criteria and constraints of a problem.	are cycles of various
system, scientists and engineers	Sometimes parts of different solutions can be combined to create a solution that is better	types of interactions.
use scientific ideas and principles.	than any of its predecessors. Models of all kinds are important for testing solutions.	Energy flows within
To construct an object, tool,	(MS.ETS1B.a)	systems.
process or system, scientists and		Matter flows within
engineers use scientific ideas and	Design solutions must be tested.	systems.
principles.	Tests are often designed to identify failure points or difficulties.	Information flows
In science and engineering, a design	Testing a solution involves investigating how well it performs under a range of likely	within systems.
plan includes testing an object,	conditions.	
tool, process, or system.	Solutions are modified on the basis of the test results.	
	Different solutions can be combined to create a better solution.	
	Designing solutions to problems is a systematic process.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	There are many types of models.	
	Models can be used to investigate how a design might work.	
	Models allow the designer to better understand the features of a design problem.	

Clarification Statement
Examples of practical problems could include reducing the effects of impact of two objects such as two cars hitting each other, an object hitting a stationary
object, or a meteor hitting a spacecraft.

Performance Expectation and Louisiana Connectors

6-MS-PS2-2 Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

LC-6-MS-PS2-2a Identify using provided data, that a change in an object's motion is due to the mass of an object and the forces acting on that object.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	FORCES AND MOTION	STABILITY AND CHANGE
investigations: Planning and	The motion of an object is determined by the sum of the forces acting on it; if the total force	Explanations of stability
carrying out investigations to	on the object is not zero, its motion will change. The greater the mass of the object, the	and change in natural or
answer questions (science) or test	greater the force needed to achieve the same change in motion. For any given object, a larger	designed systems can be
solutions (engineering) to problems	force causes a larger change in motion (acceleration) (MS.PS2A.b)	constructed by
in 6-8 builds on K-5 experiences and		examining the changes
progresses to include investigations	Multiple forces can act on an object.	over time and forces at
that use multiple variables and	The motion of an object depends on the sum of the forces acting on it.	different scales,
provide evidence to support	If an object is moving, the total of the forces acting on it does not have a sum of zero.	including atomic scales.
explanations or solutions.	If an object is not moving, the total sum of the forces action in it is equal to zero.	
 Plan an investigation individually 	An object subject to balanced forces does not change its motion. It will continue in a	Stability is a condition
and collaboratively, and in the	straight line at the same speed.	in which some aspects
design: identify independent and	An object subject to unbalanced forces changes its motion over time.	of a system (natural or
dependent variables and controls,	Unbalanced forces cause an object to speed up, slow down, and/or change direction.	designed) are
what tools are needed to do the	The change in motion of an object is affected by the mass of the object and the size of the	unchanging.
gathering, how measurements will	force applied.	Change can be
be recorded, and how many data	A larger force will cause a larger change in motion (acceleration) when compared to a	observed at different
are needed to support a claim.	smaller force.	scales (large and
		small/atomic) in a
Scientific investigations may be	All positions of objects and the directions of forces and motions must be described in an	system.
undertaken to support a claim.	arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share	
Scientific investigations should be	information with other people, these choices must also be shared. (MS.PS2A.c)	
planned.		
Scientific investigations can be	Forces and motions can be described using units.	
developed with others.	To describe the direction of forces and motions, there needs to be a reference frame or 3-	
The design plan must include what	dimensional coordinate system associated with the measurement.	
tools are needed.	To describe the position of objects, there needs to be a reference frame or 3-dimensional	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
The design plan must include how measurements will be recorded. The design plan must include what kind of data must be gathered.	coordinate system associated with the measurement. The units of measurement and reference frame must be defined. To share information about forces and motions with others, the units and reference frame must be shared as well.	
The design plan must include experimental variables including independent, dependent, and controls.	The motion of an object is dependent upon the reference frame of the observer. The reference frame must be shared when discussing the motion of an object. (MS.PS2A.d)	
	The motion of an object depends on the reference frame or 3-dimensional coordinate system defined by the observer. To share information about the motion of an object with others, the reference frame must be shared as well.	

Clarification Statement

Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law) in one dimension to a given frame of reference, or specification of units.

Performance Expectation and Louisiana Connectors

6-MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. LC-6-MS-PS2-3a Identify that electricity can be used to produce magnetism, or magnetism can be used to make electricity. LC-6-MS-PS2-3b Examine data of objects (e.g., a model that demonstrates that a piece of metal, when magnetized by electricity, can pick up many times its own weight) to identify cause and effect relationships that affect electromagnetic forces.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	TYPES OF INTERACTIONS	CAUSE AND EFFECT
problems: Asking questions	Electric and magnetic (electromagnetic) forces can be attractive (opposite charges) or	Cause and effect
(science) and defining problems	repulsive (like charges), have polar charges (north and south poles) and their sizes depend on	relationships may be
(engineering) in grades 6-8 builds	the magnitudes of the charges, currents, or magnetic strengths involved and on the distances	used to predict
from grades K-5 experiences and	between the interacting objects. (MS.PS2B.a)	phenomena in natural
progresses to specifying		or designed systems.
relationships between variables, and	Electrical energy is a form of energy that can be transferred.	
clarifying arguments and making	Some materials are magnetic and can be pushed or pulled by other magnets.	Cause and effect
models.	Electric forces can be attractive or repulsive.	relationships may be
 Ask questions that can be 	Magnetic forces can be attractive or repulsive.	used to predict
investigated within the scope of the	Electric forces have polar charges.	phenomena.
classroom, outdoor environment,	Magnetic forces have polar charges.	
and museums and other public	The size of electric forces depends on the magnitudes of the charges, currents, or magnetic	
facilities with available resources	strengths between the interacting objects.	
and, when appropriate, frame a	The size of magnetic forces depends on the magnitudes of the charges, currents, or	
hypothesis based on observations	magnetic strengths between the interacting objects.	
and scientific principles.	The size of electric forces depends on the distances between the interacting objects.	
	The size of magnetic forces depends on the distances between the interacting objects.	
Scientific questions can be		
investigated in a variety of ways.		
The answers to scientific questions		
can be supported with available		
resources.		
Questions can be framed by a		
hypothesis based on observations.		
Questions can be framed by a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
hypothesis based on scientific principles.		

Clarification Statement
Questions about data might require quantitative answers related to proportional reasoning and algebraic thinking. Examples of devices that use electric and
magnetic forces could include electromagnets. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or
the effect of increasing the number or strength of magnets on the speed of an electric motor.

Performance Expectation and Louisiana Connectors

6-MS-PS2-4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

LC-6-MS-PS2-4a Using a chart displaying the mass of those objects and the strength of interaction, compare the magnitude of gravitational force on interacting objects of different mass (e.g., the Earth and the sun)

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	TYPES OF INTERACTIONS	SYSTEMS AND SYSTEM
evidence: Engaging in argument	Gravitational forces are always attractive. There is a gravitational force between any two	MODELS
from evidence in 6-8 builds from K-5	masses, but it is very small except when one or both of the objects have large mass (e.g.,	Models can be used to
experiences and progresses to	Earth and the sun). (MS.PS2B.b)	represent systems and
constructing a convincing argument		their interactions—such
that supports or refutes claims for	Objects with mass are sources of gravitational fields and are affected by the gravitational	as inputs, processes and
either explanations or solutions	fields of all other objects with mass.	outputs—and energy,
about the natural and designed	Gravity is a force that acts between masses over very large distances.	matter, and information
world(s).	The force of gravity is always attractive.	flows within systems.
 Construct, use, and/or present an 	The force of gravity is always present.	
oral and written	The strength of the force of gravity between objects depends on the objects' masses.	Models can represent
argument supported by empirical	An object with a large mass (e.g., Earth) will cause a larger force of gravity between objects	systems and their
evidence and scientific reasoning to	when compared to an object with a small mass.	interactions.
support or refute an explanation or		In many systems there
a model for a phenomenon or a		are cycles of various
solution to a problem.		types of interactions.
		Energy flows within
Use empirical evidence to construct		systems.
an argument.		Matter flows within
Use empirical evidence to support		systems.
an argument.		Information flows
Use scientific reasoning to		within systems.
construct an argument.		
Use scientific reasoning to support		
an argument.		
Use an argument to support a		

Disciplinary Core Idea	Crosscutting Concept
	Disciplinary Core Idea

Clarification Statement

Examples of evidence for arguments could include data generated from simulations or digital tools and charts displaying mass, strength of interaction, distance from the sun, or orbital periods of objects within the solar system, not necessarily including Newton's Law of Gravitation or Kepler's Laws.

Performance Expectation and Louisiana Connectors

6-MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

LC-6-MS-PS2-5a Evaluate a change in the strength of a force (i.e., electric and magnetic) using data.

LC-6-MS-PS2-5b Identify evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	TYPES OF INTERACTIONS	CAUSE AND EFFECT
investigations: Planning and	Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields	Cause and effect
carrying out investigations to	that extend through space and can be mapped by their effect on a test object (a charged	relationships may be
answer questions (science) or test	object, or a ball, respectively). (MS.PS2B.c)	used to predict
solutions (engineering) to problems		phenomena in natural
in 6-8 builds on K-5 experiences and	Forces can be used to transfer energy from one object to another.	or designed systems.
progresses to include investigations	Gravitational, electric, and magnetic forces between a pair of objects do not require that	
that use multiple variables and	they be in contact.	Cause and effect
provide evidence to support	Gravitational, electric, and magnetic forces are explained by force fields that contain energy	relationships may be
explanations or solutions.	and can transfer energy through space.	used to predict
 Collect data to produce data to 	Electric forces have fields that extend through space.	phenomena.
serve as the basis for	Magnetic forces have fields that extend through space.	
evidence to answer scientific	Gravitational forces have fields that extend through space.	
questions or test design	Electric forces have fields that can be mapped by their effect on a test object.	
solutions under a range of	Magnetic forces have fields that can be mapped by their effect on a test object.	
conditions.	Gravitational forces have fields that can be mapped by their effect on a test object.	
Use data as evidence to answer		
scientific questions.		
Use data as evidence to test design		
solutions.		
Collect evidence under a range of		
conditions.		

Clarification Statement

Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, or electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations designed to provide qualitative evidence for the existence of fields.

Performance Expectation and Louisiana Connectors

6-MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

LC-6-MS-PS3-1a Use graphical displays of data to describe the relationship of kinetic energy to the mass of an object and to the speed of an object.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	DEFINITIONS OF ENERGY	SCALE, PROPORTION,
Analyzing data in 6-8 builds on K-5	Motion energy is properly called kinetic energy; it is proportional to the mass of the moving	AND QUANTITY
experiences and progresses to	object and grows with the square of its speed. (MS.PS3A.a)	Proportional
extending quantitative analysis to		relationships (e.g.,
investigations, distinguishing	When an object is in motion, the energy it contains is called kinetic energy.	speed as the ratio of
between correlation and causation,	The kinetic energy of an object is the energy that it possesses due to its motion.	distance traveled to
and	The kinetic energy of an object is proportional to its mass.	time taken) among
basic statistical techniques of data	Kinetic energy doubles as the mass of an object doubles.	different types of
and error analysis.	The kinetic energy of an object grows with the square of its speed. If velocity is doubled,	quantities provide
 Construct, analyze, and/or 	kinetic energy is quadrupled.	information about the
interpret graphical		magnitude of properties
displays of data and/or large data		and processes.
sets to identify		
linear and nonlinear relationships.		Ratio and
		proportionality are
Use graphical displays of data to		used in science.
identify linear relationships.		Ratio and
Use graphical displays of data to		proportionality provide
identify nonlinear relationships.		information about the
Use large data sets to identify		magnitude of
linear relationships.		properties.
Use large data sets to identify		Ratio and
nonlinear relationships.		proportionality provide
		information about the
		magnitude of
		processes.

Clarification Statement

Emphasis is on descriptive relationships between kinetic energy and mass as well as kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different masses of rocks downhill, or the impact of a wiffle ball versus a tennis ball.

Performance Expectation and Louisiana Connectors

6-MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

LC-6-MS-PS3-2a Describe, using models, how changing distance changes the amount of potential energy stored in the system (e.g., carts at varying positions on a hill).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	DEFINITIONS OF ENERGY	SYSTEMS AND SYSTEM
Modeling in 6-8 builds on K-5	An object or system of objects may also contain stored (potential) energy, depending on their	MODELS
experiences and progresses to	relative positions. (MS.PS3A.b)	Models can be used to
developing,		represent systems and
using and revising models to	When an object is at rest, the energy it contains is called potential energy.	their interactions—such
describe, test, and predict more	An object may contain stored (potential) energy depending on its relative position.	as inputs, processes and
abstract phenomena and design	A system of objects may contain stored (potential) energy depending on their relative	outputs—and energy,
systems.	positions.	matter, and information
• Develop a model to describe unobservable mechanisms.	As the relative position of two objects changes, the potential energy of the system changes.	flows within systems.
	RELATIONSHIP BETWEEN ENERGY AND FORCES	Models can represent
A model can be used to describe a	When two objects interact, each one exerts a force on the other that can cause energy to be	systems.
mechanism which cannot be seen.	transferred to or from the object. (MS.PS3C.a)	In many systems there are cycles of various
	Whenever an object pushes or pulls another object, it gets pushed or pulled back by that	types.
	object.	Energy flows within
	Energy can be transferred to or from one object to another when they interact.	systems.
	The transfer of energy can happen when two objects interact.	Matter flows within
		systems.
		Information flows
		within systems.

Clarification Statement
Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances
could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation

Clarification Statement

of a magnet, or a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, or written descriptions of systems.

Performance Expectation and Louisiana Connectors

6-MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave and how the frequency and wavelength change the expression of the wave.

LC-6-MS-PS4-1a Identify how the amplitude of a wave is related to the energy in a wave using a mathematical or graphical representation.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WAVE PROPERTIES	PATTERNS
computational thinking:	A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude.	Graphs, charts, and
Mathematical and computational	(MS.PS4A.a)	images can be used to
thinking in 6-8 builds on K-5		identify patterns in data.
experiences and progresses to	A simple wave has a repeating pattern.	
identifying	A simple wave has a specific wavelength.	Graphs can be used to
patterns in large data sets and using	A simple wave has a specific frequency.	identify patterns.
mathematical concepts to support	A simple wave has a specific amplitude.	Charts can be used to
explanations and arguments.	The wavelength and frequency of a wave are related to one another by the speed of travel	identify patterns.
Use mathematical representations	of the wave.	Images can be used to
to describe and/or	The higher the frequency of the wave the shorter the wavelength.	identify patterns.
support scientific conclusions and	The lower the frequency of the wave the longer the wavelength.	
design solutions.	The higher the frequency of the wave the higher the amplitude.	
	The lower the frequency of the wave the lower the amplitude.	
Use mathematical representations		
to describe scientific conclusions.		
Use mathematical representations		
to support scientific conclusions.		
Use mathematical representations		
to describe design solutions.		
Use mathematical representations		
to support design solutions.		

Clarification Statement

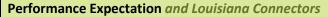
Emphasis is on describing mechanical waves with both qualitative and quantitative thinking.

P

Performance Expectation and Louisiana Connectors

6-MS-PS4-2 Develop and use a model to describe that waves are refracted, reflected, absorbed, transmitted, or scattered through various materials. LC-6-MS-PS4-2a Describe, using a model, how sound waves are reflected, absorbed, or transmitted through various materials (e.g., water, air, glass). LC-6-MS-PS4-2b Describe, using a model, how light waves are reflected, absorbed, or transmitted through various materials (e.g., water, air, glass).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	WAVE PROPERTIES	STRUCTURE AND
Modeling in 6-8 builds on K-5	A sound wave needs a medium through which it is transmitted. (MS.PS4A.b)	FUNCTION
experiences and progresses to		Structures can be
developing,	Sound waves need a medium (air, water, or solid material) to travel through.	designed to serve
using, and revising models to		particular functions by
describe, test, and predict more	ELECTROMAGNETIC RADIATION	taking into account
abstract phenomena and design systems.	When light shines on an object, it is reflected, absorbed, transmitted, or scattered through the object, depending on the object's material and the frequency (color) of the light.	properties of different materials, and how
 Develop and/or use a model to 	(MS.PS4B.a)	materials can be shaped
predict and/or describe phenomena.		and used.
	When light shines on an object, it can be reflected by the object.	
Use a model to predict phenomena.	When light shines on an object, it can be absorbed by the object.	Structures can be
Use a model to describe	When light shines on an object, it can be transmitted by the object.	designed to serve
phenomena.	When light shines on an object, it can be scattered through the object.	different functions.
Develop a model to predict	What happens to light when it shines on an object depends on the object's material.	The design of a
phenomena.	What happens to light when it shines on an object depends on the frequency (color) of the	structure must be
Develop a model to describe	light.	based on the properties
phenomena.	The selective absorption of different wavelengths of white light determines the color of	of its materials.
	most objects.	The design of a
		structure must be
	The path that light travels can be traced as straight lines, except at surfaces between different	based on its shape.
	transparent materials (e.g., air and water, air, and glass) where the light path bends	The design of a
	(Refraction). (MS.PS4B.b)	structure must be
		based on how it is being
	The path of light travels in a straight line.	used.
	The path of light bends at surfaces between different transparent materials (e.g., air and	Structure does not

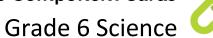

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	water, air, and glass).	always determine
	Light usually refracts when passing from one material into another.	function.
		Differentiating
	A wave model of light is useful for explaining brightness, color, and the frequency-dependent	structures can have the
	bending of light at a surface between media. However, because light can travel through a	same function.
	vacuum, it cannot be a mechanical wave, like sound or water waves. (MS.PS4B.c)	
	Light can be described using a wave model.	
	A wave model of light can be used to explain its brightness.	
	A wave model of light can be used to explain its color.	
	A wave model of light can be used to explain the bending of light at a surface between media.	
	Light can travel through a vacuum.	
	Light cannot be described as a mechanical wave.	
	At the surface between two media, like any wave, light can be reflected, refracted (its path	
	bent), or absorbed.	

Clarification Statement

Emphasis is on both light and mechanical waves interacting with various objects such as light striking a mirror or a water wave striking a jetty. Examples of models could include drawings, simulations, or written descriptions.

6-MS-ESS1-1 Develop and use a model of the Earth-sun-moon system to describe the reoccurring patterns of lunar phases, eclipses of the sun and moon, and seasons.

LC-6-MS-ESS1-1a Use an Earth-sun-moon model to show that the Earth-moon system orbits the sun once an Earth year and the orbit of the moon around Earth corresponds to a month.


LC-6-MS-ESS1-1b Use an Earth-sun-moon model to explain eclipses of the sun and the moon.

LC-6-MS-ESS1-1c Use an Earth-sun-moon model to explain how variations in the amount of the sun's energy hitting Earth's surface results in seasons.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	THE UNIVERSE AND ITS STARS	PATTERNS
Modeling in 6-8 builds on K-5	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed,	Patterns can be used to
experiences and progresses to	described, predicted, and explained with models. (MS.ESS1A.a)	identify cause and effect
developing, using, and revising		relationships.
models to describe, test, and predict	Earth rotates on its tilted axis once an Earth day.	
more abstract phenomena and	The moon orbits Earth approximately once a month.	Scientists use patterns
design systems.	Earth-moon system orbits the sun once an Earth year.	to identify cause and
 Develop and use a model to 	The Earth's rotation axis is tilted with respect to its orbital plane around the sun. Earth	effect relationships.
describe phenomena.	maintains the same relative orientation in space, with its North Pole pointed toward the	
	North Star throughout its orbit.	
Use a model to describe	Models can be used to explain the relationship and motion of the sun, the moon, and the	
phenomena.	stars.	
Develop a model to describe	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed.	
phenomena.	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be described.	
	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be predicted.	
	Patterns of the apparent motion of the sun, the moon, and stars in the sky can be explained with models.	
	EARTH AND THE SOLAR SYSTEM	
	This model of the solar system can explain eclipses of the sun and the moon. Earth's spin axis is fixed in direction over the short term but tilted relative to its orbit around the sun. The	
	is fixed in direction over the short term but three relative to its orbit around the sun. The	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year. (MS.ESS1B.b)	
	Models of the solar system can be used to explain eclipses of the sun and the moon. In the shadow of the moon that falls on Earth during a total solar eclipse, sunlight is	
	prevented from reaching that part of Earth because the moon is located between the sun and Earth.	
	Earth's axis is tilted relative to its orbit around the sun.	
	As the Earth orbits around the sun, the angle at which the sun's rays strike Earth's surface changes due to the position of Earth's tilted axis relative to the sun.	
	Different seasons are caused by the intensity of sunlight on the Earth at different times of the year.	
	Summer occurs in the Northern Hemisphere at times in the Earth's orbit when the northern axis of Earth is tilted toward the sun.	
	Winter occurs in the Northern Hemisphere at times in the Earth's orbit when the northern axis of Earth is tilted away from the sun.	

Clarification Statement

Earth's rotation relative to the positions of the moon and sun describes the occurrence of tides; the revolution of Earth around the sun explains the annual cycle of the apparent movement of the constellations in the night sky; the moon's revolution around Earth explains the cycle of spring/neap tides and the occurrence of eclipses; the moon's elliptical orbit mostly explains the occurrence of total and annular eclipses. Examples of models can be physical, graphical, or conceptual.

Performance Expectation and Louisiana Connectors

6-MS-ESS1-2 Use a model to describe the role of gravity in the motions within galaxies and the solar system.

LC-6-MS-ESS1-2a Use a model to identify the solar system as one of many systems orbiting the center of the larger system of the Milky Way galaxy, which is one of many galaxy systems in the universe.

LC-6-MS-ESS1-2b Use a model to describe the relationships and interactions between components of the solar system as a collection of many varied objects held together by gravity.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	THE UNIVERSE AND ITS STARS	SYSTEMS AND MODELS
Modeling in 6-8 builds	Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in	Models (e.g., physical,
on K-5 experiences and progresses	the universe. (MS.ESS1A.b)	mathematical,
to developing,		computer models) can
using, and revising models to	Earth is a part of the solar system.	be used to represent
describe, test, and predict	The solar system is part of the Milky Way galaxy.	systems and their
more abstract phenomena and	The Milky Way galaxy is one of many galaxies in the universe.	interactions—such as
design systems.	There are many other galaxies in the universe, each containing many other stars.	inputs, processes and
 Develop and/or use a model to 		outputs—and energy,
predict and/or	EARTH AND THE SOLAR SYSTEM	matter, and information
describe phenomena.	The solar system consists of the sun and a collection of objects, including planets, their	flows within systems.
	natural satellite(s) (moons), and asteroids that are held in orbit around the sun by its	
Use a model to predict phenomena.	gravitational pull on them. (MS.ESS1B.a)	Models can represent
Use a model to describe		systems.
phenomena.	The solar system contains the sun, planets, moons, and asteroids.	In many systems there
Develop a model to predict	The solar system is held together by the sun's gravitational force.	are cycles of various
phenomena.	The sun's gravity keeps all planets in a predictable orbit around it.	types.
Develop a model to describe	The gravitational forces from the center of the Milky Way cause stars and stellar systems to	Energy flows within
phenomena.	orbit around the center of the galaxy.	systems.
		Matter flows within
	The solar system appears to have formed from a disk of dust and gas, drawn together by	systems.
	gravity. (MS.ESS1B.c)	Information flows
		within systems.
	The solar system formed from dust and gas.	-

Science and Engineering P	Practice	Disciplinary Core Idea	Crosscutting Concept
		The components of the solar system are drawn together by gravity. The result was the formation of moon-planet and planet-sun orbiting systems.	

Clarification Statement	
Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Example	
of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as	
mathematical proportions relative to the size of familiar objects such as their school or state).	

Performance Expectation and Louisiana Connectors

6- MS-ESS1-3 Analyze and interpret data to determine scale properties of objects in the solar system. LC-6-MS-ESS1-3a Use data (e.g., statistical information, drawings and photographs, and models) to determine similarities and differences among solar system objects.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EARTH AND THE SOLAR SYSTEM	SCALE, PROPORTION,
Analyzing data in 6-8 builds on K-5	The solar system consists of the sun and a collection of objects, including planets, their	AND QUANTITY
experiences and progresses to	natural satellite(s) (moons), comets, and asteroids that are held in orbit around the sun by its	Time, space, and energy
extending quantitative analysis to	gravitational pull on them. (MS.ESS1B.a)	phenomena can be
investigations, distinguishing		observed at various
between correlation and causation,	The solar system contains the sun, planets, moons, and asteroids.	scales using models to
and basic statistical techniques of	The solar system is held together by the sun's gravitational force.	study systems that are
data and error analysis.	The sun's gravity keeps all planets in a predictable orbit around it.	too large or too small.
 Analyze and interpret data to 	The gravitational forces from the center of the Milky Way cause stars and stellar systems to	
determine similarities and	orbit around the center of the galaxy.	Phenomena can be
differences in findings.		observed at different
		scales (micro and
Use data to determine similarities		macro) in a system.
in findings.		Phenomena can be
Use data to determine differences		studied using models.
in findings.		Models can be used to
		explain time, space, and
		energy phenomena.

Clarification Statement

Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), atmospheric composition, surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.

Performance Expectation and Louisiana Connectors

6-MS-ESS3-4 Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

LC-6-MS-ESS3-4 Identify changes that human populations have made to Earth's natural systems using a variety of resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	HUMAN IMPACTS ON EARTH SYSTEMS	CAUSE AND EFFECT
evidence: Engaging in argument	Typically as human populations and per-capita consumption of natural resources increase, so	Cause and effect
from evidence in 6-8 builds on K-5	do the negative impacts on Earth unless the activities and technologies involved are	relationships may be
experiences and progresses to	engineered otherwise. (MS.ESS3C.b)	used to predict
constructing a convincing argument		phenomena in natural
that supports or refutes claims for	As the human population grows, so does the consumption of natural resources.	or designed systems.
either explanations or solutions	As the human population grows, so do the human impacts on the planet.	
about the natural and designed	People impact the environment by:	Cause and effect
world(s).	 poor agricultural practices (e.g., wasteful water), 	relationships may be
• Construct, use, and/or present an	 polluting the air, water, and ground, 	used to predict
oral and written argument	 tourism and recreational development (e.g., ski resorts, golf courses), and 	phenomena.
supported by empirical evidence	 clearing forests and grasslands for cities. 	
and scientific reasoning to support	People can minimize the impact on the environment by:	
or refute an explanation or a model	 practicing proper agriculture (e.g., rotating crops), 	
for a phenomenon or a solution to a	 reusing, reducing, and recycling materials, 	
problem.	 natural resource management, 	
	 conserving water and electricity, and 	
Use empirical evidence to construct	 maintaining some forest and grassland areas. 	
an argument.	Some negative effects of human activities are reversible using technology.	
Use empirical evidence to support	The sustainability of human societies and of the biodiversity that supports them requires	
an argument.	responsible management of natural resources.	
Use scientific reasoning to		
construct an argument.	BIOGEOLOGY	
Use scientific reasoning to support	Living organisms interact with Earth materials resulting in changes of the Earth. (MS.ESS2E.a)	
an argument.		
Use an argument to support a	Living things have changed the makeup of Earth's geosphere, hydrosphere, and atmosphere	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
model for a phenomena.	over geological time.	
Use an argument to refute a model	The flow of water can be affected by living organisms.	
for a phenomena.	Ground cover can be affected by living organisms.	
Use an argument to support a solution to a problem.	The slope of the land can be affected by living organisms.	
Use an argument to refute a	RESOURCE MANAGEMENT FOR LOUISIANA	
solution to a problem.	Responsible management of Louisiana's natural resources promotes economic growth, a	
	healthy environment, and vibrant productive ecosystems. (MS.EVS1B.a)	
	Responsible management of Louisiana's natural resources helps create economic growth.	
	Responsible management of Louisiana's natural resources helps create a healthy environment.	
	Responsible management of Louisiana's natural resources helps sustain vibrant productive ecosystems.	

Clarification Statement

Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions.

Performance Expectation and Louisiana Connectors

6-MS-LS1-1 Conduct an investigation to provide evidence that living things are made of cells, either one or many different numbers and types. LC-6-MS-LS1-1a Identify that living things may be made of one cell or many different numbers and types of cells.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND FUNCTION	SCALE, PROPORTION,
investigations: Planning and	All living things are made up of cells, which are the smallest living unit. An organism may	AND QUANTITY
carrying out investigations to	consist of one single cell (unicellular) or many different numbers and types of cells	Phenomena that can be
answer questions (science) or test	(multicellular). (MS.LS1A.a)	observed at one scale
solutions (engineering) to problems		may not be observable
in 6-8 builds on K-5 experiences and	All living things are made up of cells.	at another scale.
progresses to include investigations	The cell is the smallest living unit.	
that use multiple variables and	The cell is the fundamental unit of life.	Different phenomena
provide evidence to support	An organism can consist of a single cell.	correspond to different
explanations or solutions.	An organism can consist of many cells.	scales.
 Conduct an investigation and/or 	An organism can consist of many different types of cells.	Some phenomena are
evaluate and/or revise the	Single-celled organisms are composed of one cell that can survive independently.	observable at some
experimental design to produce	Multi-cellular organisms consist of individual cells that cannot survive independently.	scales.
data to serve as the basis for		Some phenomena
evidence that meet the goals of the		cannot be observed at
investigation.		certain scales.
Conduct an investigation to		
produce data to meet its goals.		
Evaluate the experimental design		
to ensure it meets its goals.		
Revise the experimental design to		
ensure it meets it goals.		
Data may serve as evidence that an		
investigation has met its goals.		

Clarification Statement

Emphasis is on developing evidence that living things are made of cells, distinguishing between living and nonliving things, and understanding that living things may be made of one or many cells, including specialized cells. Examples could include animal cells (blood, muscle, skin, nerve, bone, or reproductive) or plant cells (root, leaf, or reproductive).

Performance Expectation and Louisiana Connectors

6-MS-LS1-2 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. LC-6-MS-LS1-2a Using a model(s), identify the function of a cell as a whole.

LC-6-MS-LS1-2b Using a model(s), identify special structures within cells are responsible for particular functions.

LC-6-MS-LS1-2c Using a model(s), identify the components of a cell.

LC-6-MS-LS1-2d Using a model(s), identify the functions of components of a cell.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND FUNCTION	STRUCTURE AND
Modeling in 6-8 builds on K-5	Within cells, special structures (organelles) are responsible for particular functions. The cell	FUNCTION
experiences and progresses to	membrane forms the boundary that controls the material(s) that enter and leave the cells in	Complex and
developing, using, and revising	order to maintain homeostasis. (MS.LS1A.b)	microscopic structures
models to describe, test, and predict		and systems can be
more abstract phenomena and	Organelles are structures within cells.	visualized, modeled, and
design systems.	Most cells contain a set of observable structures called organelles which allow them to	used to describe how
 Develop and/or use a model to 	carry out life processes.	their function depends
predict and/or	Organelles perform specific functions.	on the shapes,
describe phenomena.	A living cell depends on its organelles to function properly.	composition, and
	Major organelles include vacuoles, cell membrane, nucleus, and mitochondria.	relationships among its
Models can be used to describe	Plant cells are structurally and functionally different from animal cells.	parts; therefore,
phenomena.	Plants contain organelles such as cell wall and chloroplasts that are not found in animal	complex natural and
Models can be used to predict	cells.	designed
phenomena.	A cell membrane surrounds every cell.	structures/systems can
	The cell membrane controls what goes in and out of a cell.	be analyzed to
	Plant cells have a cell wall in addition to a cell membrane, whereas animal cells have only a	determine how they
	cell membrane. Plants use cell walls to provide structure to the plant.	function.
	A living cell maintains stable internal conditions (homeostasis) despite changes in its	
	surroundings.	Complex structures can
	The functions of the organelles contribute to the cell's overall function as a whole (e.g.,	be visualized.
	maintain the cells internal processes, the structure of the cell, what enters and leaves the	Microscopic structures
	cell, and overall cellular function).	can be visualized.
		Complex structures can
		be modeled.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
		Microscopic structures
		can be modeled.
		The function of a
		structure depends on
		its shape.
		The function of a
		structure depends on
		its composition.
		The function of a
		structure depends on
		relationships among its
		parts.
		Designed
		structures/systems can
		be analyzed to
		determine how they
		function.

Clarification Statement

Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, such as the nucleus, chloroplasts, mitochondria, cell membrane, or cell wall.

Performance Expectation and Louisiana Connectors

6-MS-LS2-1 Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. LC-6-MS-LS2-1a Recognize data that shows growth of organisms and population increases are limited by access to resources. LC-6-MS-LS2-1b Identify factors (e.g., resources, climate or competition) in an ecosystem that influence growth in populations of organisms.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	CAUSE AND EFFECT
Analyzing data in 6-8 builds on K-5	Organisms, and populations of organisms, are dependent on their environmental interactions	Cause and effect
experiences and progresses	both with other living things and with nonliving factors. (MS.LS2A.a)	relationships may be
extending quantitative analysis to		used to predict
investigations, distinguishing	In any ecosystem, there are physical and biological factors.	phenomena in natural
between correlation and causation, and basic statistical techniques of	All living organisms interact with the living and nonliving parts of their surroundings to meet their needs for survival.	or designed systems.
data and error analysis.	Organisms are dependent on other living things.	Cause and effect
Analyze and interpret data to	Organisms are dependent on nonliving factors.	relationships may be
provide evidence for phenomena.	Populations are dependent on other living things.	used to predict
	Populations are dependent on nonliving factors.	phenomena.
Interpret data to provide evidence for phenomena.	The size of populations may change as a result of the interrelationships among organisms.	
Analyze data to provide evidence	In any ecosystem, organisms and populations with similar requirements for food, water,	
for phenomena.	oxygen, or other resources may compete with each other for limited resources, access to	
	which consequently constrains their growth and reproduction. (MS.LS2A.b)	
	A population consists of all individuals of a species that occur together at a given place and time.	
	All populations living together (biotic factors) and the physical factors with which they interact (abiotic factors) compose an ecosystem.	
	Organisms and populations cope with the physical conditions of their immediate surroundings.	
	Organisms may compete with other organisms for resources (e.g., food, water, oxygen, shelter).	
	Availability of resources (e.g., food, water, oxygen, shelter) can lead to changes in	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	populations. Access to resources is needed for organisms to grow and reproduce.	
	Growth of organisms and population increases are limited by access to resources. (MS.LS2A.c)	
	Growth of organisms are limited by access to resources. Population increases are limited by access to resources. In order to survive, populations within an ecosystem require a balance of resources.	

Clarification Statement
Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant or scarce resources.

Performance Expectation and Louisiana Connectors

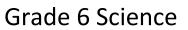
6-MS-LS2-2 Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. LC-6-MS-LS2-2a Use an explanation of interactions between organisms in an ecosystem to identify examples of competitive, predatory, or symbiotic relationships.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	PATTERNS
designing solutions: Constructing	Predatory interactions may reduce the number of organisms or eliminate whole populations	Patterns can be used to
explanations (science) and designing	of organisms. Mutually beneficial interactions, in contrast, may become so interdependent	identify cause and
solutions (engineering) in 6-8 builds	that each organism requires the other for survival. Although the species involved in these	effect relationships.
on K-5 experiences and progresses	competitive, predatory, and mutually beneficial interactions vary across ecosystems, the	
to include constructing explanations	patterns of interactions of organisms with their environments, both living and nonliving, are	Scientists use patterns
and designing solutions supported	shared. (MS.LS2A.d)	to identify cause and
by multiple sources of evidence		effect relationships.
consistent with scientific ideas,	A predatory species can reduce the number of organisms in a population.	
principles, and theories.	A predatory species can eliminate whole populations.	
 Construct an explanation that 	Predator/Prey relationships can have a negative correlation.	
includes qualitative	Different organisms may be interdependent on each other for survival.	
or quantitative relationships	When organisms depend on each other, it is called a mutually beneficial interaction.	
between variables that	The species in these cause and effect relationships (competitive, predatory, and mutually	
predict(s) and/or describe(s)	beneficial) vary across ecosystems.	
phenomena.	Patterns can be observed in these cause and effect relationships (competitive, predatory,	
	and mutually beneficial) across ecosystems.	
Construct an explanation that	Organisms within an ecosystem may interact symbiotically through mutualism, parasitism,	
includes qualitative relationships to	and commensalism.	
predict a phenomena.		
Construct an explanation that		
includes qualitative relationships to		
describe a phenomena.		
Construct an explanation that		
includes quantitative relationships		
to predict a phenomena.		
Construct an explanation that		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
includes quantitative relationships		
to describe a phenomena.		

Clarification Statement
Emphasis is on (1) predicting consistent patterns of interactions in different ecosystems and (2) relationships among and between biotic and abiotic components
of ecosystems. Examples of types of interactions could include competitive, predatory, mutually beneficial, or other symbiotic relationships.

Performance Expectation and Louisiana Connectors


6-MS-LS2-3 Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. LC-6-MS-LS2-3a Using a model(s), describe energy transfer between producers and consumers in an ecosystem using a model (e.g., producers provide energy for consumers).

LC-6-MS-LS2-3b Using a model(s), describe the cycling of matter among living and nonliving parts of a defined system (e.g., the atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	CYCLE OF MATTER AND ENERGY TRANSFER IN ECOSYSTEMS	ENERGY
Modeling in 6-8 builds on K-5	Food webs are models that demonstrate how matter and energy is transferred between	The transfer of energy
experiences and progresses to	producers, consumers, and decomposers as the three groups interact within an ecosystem.	can be tracked as
developing, using, and revising	(MS.LS2B.a)	energy flows through a
models to describe, test, and predict		designed or natural
more abstract phenomena and	Matter and energy cycle through both living and non-living parts of ecosystems.	system.
design systems.	Matter and energy are transferred between producers, consumers, and decomposers within	
 Develop and/or use a model to 	an ecosystem.	Energy cannot be
predict and/or describe phenomena.	In most ecosystems, energy enters as sunlight and is transformed by producers into a	created or destroyed.
	biologically usable form of matter through photosynthesis.	Energy can be
Models can be used to describe	Food webs are models that show how matter and energy is transferred within and across	transferred.
phenomena.	groups of organisms in an ecosystem.	Energy flows through
Models can be used to predict	Some animals are herbivores, eat plants and algae.	systems (natural and
phenomena.	Some animals are omnivores, eat plants and/or animals.	designed).
	Some animals are carnivores, which eat animals that have eaten photosynthetic organisms.	
	Transfers of matter into and out of the physical environment occur at every level. (MS.LS2B.b)	
	Matter cycles through living systems and between living systems and the physical environment.	
	Over time, matter is transferred repeatedly from one organism to another and between organisms and their physical environment.	
	When a consumer eats a producer, matter is transferred.	
	When a producer or consumer decomposes, matter is transferred.	
	When a consumer eats a consumer, matter is transferred.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. (MS.LS2B.c)	
	Dead plants and animals are broken down by decomposers. Decomposers recycle nutrients and material back into the soil in terrestrial environments. Decomposers recycle nutrients and material back into the water in aquatic environments. Food webs recycle matter continuously as organisms are decomposed after death to return food materials to the environment where it re-enters a food web.	
	The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. Geochemical cycles include carbon, nitrogen, and the water cycle. (MS.LS2B.d)	
	Living things are composed of atoms. All the atoms that make up organisms are repeatedly cycled between living and nonliving parts of the ecosystem. The total amount of matter remains constant, even though its form and location change. Matter and energy continually cycle through Earth's geochemical cycles (carbon, nitrogen, and the water cycle).	

Clarification Statement

Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.

