

Performance Expectation and Louisiana Connectors

8-MS-PS1-1 Develop models to describe the atomic composition of simple molecules and extended structures. LC-8-MS-PS1-1a Using a model(s), identify that an atom's nucleus as made of protons and neutrons and is surrounded by electrons. LC-8-MS-PS1-1b Using a model(s), identify that individual atoms of the same or different types that repeat to form extended structures (e.g., sodium chloride).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	SCALE, PROPORTION,
Modeling in 6-8 builds on K-5	Substances are made from different types of atoms, which combine with one another in	AND QUANTITY
experiences and progresses to	various ways. Atoms form molecules that range in size from two to thousands of atoms.	Time, space, and energy
developing, using and revising	(MS.PS1A.a)	phenomena can be
models to describe, test, and predict		observed at various
more abstract phenomena and	All matter is composed of tiny particles called atoms.	scales using models to
design systems.	Atoms are the basic unit of a chemical element.	study systems that are
 Develop and/or use a model to 	Substances are made from different type of atoms.	too large or too small.
predict and/or describe phenomena.	Atoms form molecules ranging from small to very complex structures.	
	A molecule is a group of atoms that are joined together and act as a single unit.	Phenomena can be
Models can be used to describe	Molecules can contain as many as a billion atoms or a few as two.	observed at different
phenomena.	The arrangement, motion, and interaction of these particles determine the three states of	scales (micro and
Models can be used to predict	matter (solid, liquid, and gas).	macro) in a system.
phenomena.		Phenomena can be
	Solids may be formed from molecules, or they may be extended structures with repeating	studied using models.
	subunits (e.g., crystals). (MS.PS1A.e)	Models can be used to
		explain time, space, and
	Solids have a definite volume and a definite shape.	energy phenomena.
	Solids may be formed from molecules.	
	Solids can be extended structures with repeating subunits.	
	Repeating subunits can create crystal structures.	
	Salt, sugar, sand, and snow are examples of crystalline solids.	

Clarification Statement

Emphasis is on developing models of molecules that vary in complexity. Examples of extended structures could include minerals such as but not limited to halite, agate, calcite, or sapphire. Examples of molecular-level models could include drawings, 3-D models, or computer representations showing different molecules with different types of atoms.

Performance Expectation and Louisiana Connectors

8-MS-PS1-3 Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. LC-8-MS-PS1-3a Compare and contrast characteristics of natural and synthetic materials (e.g., fibers) from provided information (e.g., text, media, visual displays, and data).

LC-8-MS-PS1-3b Identify ways in which natural resources undergo a chemical process to form synthetic materials (e.g., medicine, textiles, clothing) which impact society.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	STRUCTURE AND PROPERTIES OF MATTER	STRUCTURE AND
communicating information:	Each pure substance has characteristic physical and chemical properties (for any bulk quantity	FUNCTION
Obtaining, evaluating, and	under given conditions) under normal conditions that can be used to identify it. (MS.PS1A.b)	Structures can be
communicating information in 6-8		designed to serve
builds on K-5 experiences and	Pure substances are made from a single type of atom or molecule.	particular functions by
progresses to evaluating the merit	Elements and compounds are pure substances (e.g., carbon, oxygen, water, sodium	taking into account
and validity of ideas and methods.	chloride, methane).	properties of different
 Gather, read, and synthesize 	Pure substances have characteristics (physical and chemical properties) that are used to	materials, and how
information from multiple	identify them.	materials can be shaped
appropriate sources and assess the		and used.
credibility, accuracy, and possible	CHEMICAL REACTIONS	
bias of each publication and	Substances react chemically in characteristic ways. In a chemical process, the atoms that	Structures can be
methods used, and describe how	make up the original substances are regrouped into different molecules, and these new	designed to serve
they are supported or not supported	substances have different properties from those of the reactants. (MS.PS1B.a)	different functions.
by evidence.		The design of a
	A natural substance is made up of multiple elements found in nature.	structure must be based
Gather information from multiple	A synthetic substance is made up of multiple substances in a lab by scientists (e.g.,	on the properties of its
appropriate sources.	pesticides, medicines).	materials.
Identify and locate information	Substances react in characteristic ways (e.g., form gas, form precipitates, change color).	The design of a
from multiple appropriate sources.	When a chemical reaction occurs, the parts that make up the original substance are	structure must be based
Assess the credibility of each	regrouped in a new way that makes a new substance with new properties.	on its shape.
publication.	If atoms are rearranged, the ending result is a different substance.	The design of a
Assess the accuracy of each	Many substances react chemically with other substances to form new substances with	structure must be based
publication.	different properties.	on how it is being used.
Assess the possible bias of each		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
publication.		
Assess the methods used by each		
publication.		
Describe how the methods used are		
supported or not supported.		

Emphasis is on natural resources that undergo a chemical process to form synthetic materials. These natural resources may or may not be pure substances. Examples of new materials could include new medicine, foods, or alternative fuels, and focus is on qualitative as opposed to quantitative information.

Performance Expectation and Louisiana Connectors

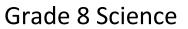
8-MS-PS1-6 Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. LC-8-MS-PS1-6a Identify a chemical process that releases or absorbs thermal energy (e.g., dissolving ammonium chloride or calcium chloride) which, given the features of a problem, may provide a solution.

LC-8-MS-PS1-6b Identify a way to test or modify a device that either releases or absorbs thermal energy by chemical processes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	CHEMICAL REACTIONS	ENERGY AND MATTER:
designing solutions: Constructing	Some chemical reactions release energy (exothermic reactions), others store energy	FLOWS, CYCLES,
explanations and designing solutions	(endothermic reactions). (MS.PS1B.c)	AND CONSERVATION
in 6-8 builds on K-5 experiences and		The transfer of energy
progresses to include designing	When a substance interacts with other substances, called chemical reactions, it sometimes	can be tracked as
solutions supported by multiple	releases energy and sometimes stores energy.	energy flows through a
sources of evidence consistent with	Some reactions release energy (e.g., burning fuel in the presence of oxygen), and others	designed or natural
scientific ideas, principles, and	require energy input (e.g., synthesis of sugars from carbon dioxide and water).	system.
theories.	Exothermic reactions release energy.	
 Undertake a design project, 	Endothermic reactions absorb energy.	Energy cannot be
engaging in the design cycle, to		created or destroyed.
construct and/or implement a	OPTIMIZING THE DESIGN SOLUTION	Energy can be
solution that meets specific design	Although one design may not perform the best across all tests, identifying the characteristics	transferred.
criteria and constraints.	of the design that performs best in each test can provide useful information for the redesign process-that is, some of those characteristics may be incorporated into the new design.	Energy flows through systems (natural and
Design solutions must meet certain criteria and constraints.	(MS.ETS1.C.a)	designed).
In the design cycle, solutions are	One design may not perform the best across all tests.	
modified on the basis of specific	Identify and explain why one model is better than another.	
design criteria and constraints.	Analyze data from tests to identify how aspects of different design solutions can be	
A solution must meet specific	modified to create a new design and a better solution.	
design criteria and constraints	Analyze data from tests to identify how aspects of different design solutions can be	
before it can be implemented.	combined to create a new design and a better solution.	
	Optimization often requires making trade-offs among competing criteria.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Thus, one criterion is traded off for another that is deemed more important. Sometimes, different designs, each of them optimized for different conditions, are needed.	

Clarification Statement
Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a
substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride, calcium chloride or a citric acid and baking soda
(sodium bicarbonate) reaction in order to warm or cool an object.


Performance Expectation and Louisiana Connectors

8-MS-PS3-3 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. LC-8-MS-PS3-3a Use information (e.g., graph, model) to identify a device (e.g., foam cup, insulated box) that either minimizes or maximizes thermal energy transfer (e.g., keeping liquids hot or cold).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER:
designing solutions: Constructing	Temperature is a measure of the average kinetic energy; the relationship between the	FLOWS, CYCLES, AND
explanations and designing solutions	temperature and the total energy of the system depends on the types, states, and amounts of	CONSERVATION
in 6-8 builds on K-5 experiences and	matter present. (MS.PS3A.d)	The transfer of energy
progresses to include constructing		can be tracked as
explanations and designing solutions	Temperature is a measurement used to determine how fast particles are moving inside of a	energy flows through a
supported by multiple sources of	substance or how much energy the substance contains.	designed or natural
evidence consistent with scientific	The temperature of matter is a measurement of the matter's average kinetic energy.	system.
ideas, principles, and theories.	The state, amount of substance, and the type of substance will all affect the total amount of	
 Apply scientific ideas, principles, 	energy it has.	Energy can be
and/or evidence to construct, revise		transferred.
and/or use an explanation for real-	CONSERVATION OF ENERGY AND ENERGY TRANSFER	Energy flows through
world phenomena, examples, or	Energy is spontaneously transferred out of hotter regions or objects and into colder ones.	systems (natural and
events.	(MS.PS3B.c)	designed).
Apply scientific ideas, principles,	Energy is transferred out of hotter regions into colder ones.	
and evidence to construct an	Energy is transferred out of hotter objects into colder ones.	
explanation of phenomena or	Heat energy transfers from warmer substances to cooler substances until they reach the	
events.	same temperature.	
Apply scientific ideas, principles,		
and evidence to revise an	DEFINING AND DELIMITING AN ENGINEERING PROBLEM	
explanation of phenomena or	The more precisely a design task's criteria and constraints can be defined, the more likely it is	
events.	that the designed solution will be successful. Specification of constraints includes	
Apply scientific ideas, principles,	consideration of scientific principles and other relevant knowledge that is likely to limit	
and evidence to use an explanation	possible solutions.(MS.ETS1A.a)	
of phenomena or events.		
	The engineering design process begins with the identification of a problem to solve and the	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	specification of criteria, that the final product or system must meet.	
	Define a design problem that can be solved through consideration of potential impacts on	
	people and the environment, and scientific or other issues that are relevant to the problem.	
	Engineering design is guided by criteria and constraints.	
	A solution needs to be tested, to prove the validity of the design and then modified on the	
	basis of the test results in order to improve it. There are systematic processes for evaluating	
	solutions with respect to how well they meet the criteria and constraints of a problem.	
	Sometimes parts of different solutions can be combined to create a solution that is better	
	than any of its predecessors. Models of all kinds are important for testing	
	solutions.(MS.ETS1B.a)	
	Design solutions must be tested.	
	Tests are often designed to identify failure points or difficulties.	
	Testing a solution involves investigating how well it performs under a range of likely conditions.	
	Solutions are modified on the basis of the test results.	
	Different solutions can be combined to create a better solution.	
	Designing solutions to problems is a systematic process.	
	There are many types of models.	
	Models can be used to investigate how a design might work.	
	Models allow the designer to better understand the features of a design problem.	

Emphasis is on the ability to maximize or minimize thermal energy transfer as it relates to devices used when an area loses electricity after a natural disaster. Examples of devices could include an insulated box or a solar cooker. Testing of the device relies on performance and not direct calculation of the total amount of thermal energy transferred.

Performance Expectation and Louisiana Connectors

8-MS-PS3-5 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

LC-8-MS-PS3-5a Using information from graphical displays of data and models, describe the change in the kinetic energy of an object as energy transferred to or from an object.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	CONSERVATION OF ENERGY AND ENERGY TRANSFER	ENERGY AND MATTER
evidence: Engaging in argument	When the kinetic energy of an object changes, there is inevitably some other change in	Energy may take
from evidence in 6-8 builds on K-5	energy at the same time. (MS.PS3B.a)	different forms (e.g.,
experiences and progresses to		energy in fields, thermal
constructing a convincing argument	Mechanical energy comes from the motion (kinetic energy) and position (potential energy)	energy, energy of
that supports or refutes claims for	of objects.	motion).
either explanations or solutions	Potential energy transforms into kinetic energy (e.g., a book sitting on a counter is at rest, it	
about the natural and designed	has potential energy. If a person knocks the book off of the counter, the book has kinetic	Different forms of
world(s).	energy as it falls, because it is in motion and the potential energy has transformed into	energy (e.g., energy in
 Construct, use, and/or present an 	kinetic energy).	fields, thermal energy,
oral and written argument	A decrease of one form of energy is accompanied by an increase in one or more other forms	energy of motion) exist.
supported by empirical evidence	of energy and vice versa.	Energy is transformed
and scientific reasoning to support	Energy may transfer into or out of a system and it may change forms, but the total energy	from one form of
or refute an explanation or a model	cannot change.	energy to another.
for a phenomenon or a solution to a	Within a system, the change in stored energy is always balanced by a change in total kinetic	
problem.	energy.	
Construct an argument to support		
or refute an explanation, model, or		
solution to a problem.		
Use an argument to support or		
refute an explanation, model, or		
solution to a problem.		
Present an argument to support or		
refute an explanation, model, or		
solution to a problem.		

Examples of empirical evidence used in arguments could include an inventory or other representation of the energy (i.e., mechanical, thermal, or other forms of energy) before and after the transfer in the form of temperature changes or motion of object. This does not include the quantification of the energy transferred in the system.

10

Performance Expectation and Louisiana Connectors

8-MS-ESS1-4 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's geologic history. LC-8-MS-ESS1-4a Sequence the relative order of events from Earth's history shown by rock strata and patterns of layering (organize was more complex as a task/term than sequence).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	THE HISTORY OF PLANET EARTH	SCALE, PROPORTION,
designing solutions: Constructing	The geologic time scale interpreted from rock strata provides a way to organize Earth's	AND QUANTITY
explanations and designing solutions	history. Analyses of rock strata and the fossil record provide only relative dates, not an	Time, space, and energy
in 6-8 builds on K-5 experiences and	absolute scale. (MS.ESS1C.a)	phenomena can be
progresses to include constructing		observed at various
explanations and designing solutions	Past geological events and environments can be reconstructed by interpreting rock strata.	scales using models to
supported by multiple sources of	Earth's history is documented in the chronological order of its layers of rock. However, this	study systems that are
evidence consistent with scientific	ordering is not able to provide absolute dates.	too large or too small.
ideas, principles, and theories.	Absolute dating is a method of estimating the age of a rock sample in years via radiometric	
 Construct a scientific explanation 	techniques.	Phenomena can be
based on valid and reliable evidence	Scientists use relative dating and fossil evidence to correlate sedimentary rock sequences.	observed at different
obtained from sources (including	Relative dating is a scientific process of evaluation used to determine the relative order of	scales (micro and
the students' own experiments) and	past events, but does not determine the absolute age of an object.	macro) in a system.
the assumption that theories and		Phenomena can be
laws that describe the natural world	Scientists use data from radioactive dating techniques to estimate the age of Earth's	studied using models.
operate today as they did in the past	materials. (MS.ESS1C.b)	Models can be used to
and will continue to do so in the		explain time, space, and
future.	Most elements are stable.	energy phenomena.
	Some elements exist in forms that are unstable.	
Obtain evidence from valid and	Over time these elements breakdown or decay by releasing particles and energy.	
reliable sources.	This process is called radioactive decay.	
Construct a scientific explanation	Scientists use the rate at which these elements decay to calculate a rock's age.	
based on evidence.	Scientists use radioactive elements as natural clocks for determining ages of certain types of	
Construct a scientific explanation	rocks.	
based on the assumption that		
theories and laws that describe the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
natural world operate today as they did in the past.		

Emphasis is on analyses of rock formations and fossils they contain to establish relative ages of major events in Earth's history. Major events could include the formation of mountain chains and ocean basins, adaptation and extinction of particular living organisms, volcanic eruptions, periods of massive glaciation, and the development of watersheds and rivers through glaciation and water erosion. The events in Earth's history happened in the past continue today. Scientific explanations can include models.

Performance Expectation and Louisiana Connectors

8-MS-ESS2-1 Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. LC-8-MS-ESS2-1a Identify relationships between components in a model showing the cycling of energy flows and matter within and among Earth's systems, including the sun and Earth's interior as primary energy sources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	EARTH'S MATERIALS AND SYSTEMS	STABILITY AND CHANGE
Modeling in 6-8 builds on K-5	All Earth processes are the result of energy flowing and matter cycling within and among the	Explanations of stability
experiences and progresses to	planet's systems. This energy is derived from the sun and Earth's hot interior. The energy that	and change in natural or
developing, using, and revising	flows and matter that cycles produce chemical and physical changes in Earth's materials and	designed systems can be
models to describe, test, and predict	living organisms. (MS.ESS2A.a)	constructed by
more abstract phenomena and		examining the changes
design systems.	Energy and matter cycle throughout our planet.	over time and forces at
 Develop and/or use a model to 	The energy which drives these processes is derived from the sun and Earth's hot interior.	different scales,
predict and/or describe phenomena.	Transfers of energy and movements of matter cause physical and chemical changes to occur	including the atomic
	in Earth's materials and organisms.	scale.
Models can be used to describe	The four spheres of the Earth are the atmosphere, the biosphere, the hydrosphere and the	
phenomena.	lithosphere.	Stability is a condition
Models can be used to predict	Earth's four spheres interact as part of a dynamic system in which changes over time are the	in which some aspects
phenomena.	result of external and internal energy sources.	of a system (natural or
		designed) are
		unchanging.
		Change can be
		observed at different
		scales (large and
		small/atomic) in a
		system.

Clarification Statement

Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth's materials.

Performance Expectation and Louisiana Connectors

8-MS-ESS2-2 Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. LC-8-MS-ESS2-2a Identify examples of processes to explain that change Earth's surface at varying time and spatial scales that can be large (e.g., plate motions) or small (e.g., landslides).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	EARTH'S MATERIALS AND SYSTEMS	SCALE, PROPORTION,
designing solutions: Constructing	The planet's systems interact over scales that range from microscopic to global in size, and	AND QUANTITY
explanations and designing solutions	they operate over fractions of a second to billions of years. These interactions have shaped	Time, space, and energy
in 6-8 builds on K-5 experiences and	Earth's history and will determine its future. (MS.ESS2A.b)	phenomena can be
progresses to include constructing		observed at various
explanations and designing solutions	Earth's systems are dynamic.	scales using models to
supported by multiple sources of	Earth's systems interact over a wide range of temporal (fractions of a second to billions of	study systems that are
evidence consistent with scientific	years) and spatial (microscopic to global) scales.	too large or too small.
ideas, principles, and theories.	Earth's systems, microscopic to global in size, have cycles that interact with each other.	
Construct a scientific explanation	Most changes occur gradually, but larger and rapid catastrophic events (e.g., volcanic	Phenomena can be
based on valid and reliable evidence	eruptions, earthquakes, hurricanes) also account for changes to Earth's surface.	observed at different
obtained from sources (including	These processes and their interactions have shaped and will continue to shape the Earth.	scales (micro and
the students' own experiments) and	Some satellites allow scientists to observe, over time, large-scale changes in the geosphere.	macro) in a system.
the assumption that theories and		Phenomena can be
laws that describe the natural world	THE ROLE OF WATER IN EARTH'S SURFACE PROCESSES	studied using models.
operate today as they did in the past	Water's movements—both on the land and underground—cause weathering and erosion,	Models can be used to
and will continue to do so in the	which change the land's surface features and create underground formations. (MS.ESS2C.e)	explain time, space, and
future.		energy phenomena.
	Sedimentary rocks are formed through the processes of weathering, erosion, and	
Obtain evidence from valid and	deposition.	
reliable sources.	Erosion shapes rock particles.	
Construct a scientific explanation	Erosion shapes and reshapes the land surface (e.g., coastal erosions land loss).	
based on evidence from readings,	Over time, microscopic particle movement that takes place during weathering and erosion	
diagrams, charts, and/or tables.	by the water cycle's continuous movement change the land's surface features (e.g.,	
Construct a scientific explanation	deposition by the movement of water, ice and wind).	
based on the assumption that the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
natural world operates today as	Over time, the water cycle's continuous movement create underground formations (e.g.,	
they did in the past.	aquifers).	

Clarification Statement
Emphasis is on how processes change Earth's surface at time and spatial scales that can be large (such as slow plate motions or the uplift of a large mountain
ranges) or small (such as rapid landslides on microscopic geochemical reactions), and how many geosciences processes usually behave gradually but are
punctuated by catastrophic events (such as earthquakes, volcanoes, and meteor impacts). Examples of geoscience processes include surface weathering and
deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.

Performance Expectation and Louisiana Connectors

8-MS-ESS2-3 Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and sea floor structures to provide evidence of the past plate motions.

LC-8-MS-ESS2-3a Using graphical displays of data, identify how the shapes of the continents (e.g., fit like a jigsaw puzzle) and fossil comparisons (e.g., fit together) along the edges of continents to demonstrate lithospheric plate movement.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting	THE HISTORY OF PLANET EARTH	PATTERNS
data: Analyzing data in 6-8	Tectonic processes continually generate new ocean sea floor at ridges and	Patterns in rates of change and other
builds on K-5 experiences	destroy old sea floor at trenches. (MS.ESS1C.c)	numerical relationships can provide
and progresses to		information about natural and human
extending quantitative	Tectonic processes cause the movement of Earth's plates and sea floor	designed systems.
analysis to investigations,	spreading.	
distinguishing between	Large plates of Earth's surface have moved and continue to move due to	Patterns in rates of change can provide
correlation and causation,	natural forces in the Earth's interior.	information about systems (natural and
and basic statistical	These movements generate new ocean sea floor at mid-ocean ridges.	designed).
techniques of data and	These movements destroy old ocean floor at trenches (e.g., subduction zones)	Patterns in numerical relationships can
error analysis.	as plates overlap or pull away from each other.	provide information about systems (natural
 Analyze and interpret 	In sea floor spreading, molten material forms new rock along the mid-ocean	and designed).
data to provide evidence	ridge.	
for phenomena.	All subducted plates are oceanic, which keeps the ocean floor in a constant stat	
	e of change; whereas, the continents change much more slowly in geologic tim	
Interpret data to provide	е.	
evidence for phenomena.		
Analyze data to provide	PLATE TECTONICS AND LARGE-SCALE SYSTEM INTERACTIONS	
evidence for phenomena.	Maps of ancient land and water patterns, based on investigations of rocks and	
	fossils, make clear how Earth's plates have moved great distances, collided, and	
	spread apart. (MS.ESS2B.a)	
	The theory of plate tectonics explains plate movements and how they cause	
	continental drift.	
	Scientist believe that at one time the continents were connected and then grad	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	ually separated by lithospheric plate movement. The shapes of the continents (fit like a jigsaw puzzle) demonstrate lithospheric plate movement. Evidence of the continents being connected include the shapes of the continent s, and fossil and rock similarities from continents no longer connected. Fossil comparisons along the edges of continents demonstrate lithospheric plate movement. Data analysis, including maps, the distribution of fossils and rocks, continental shapes, and sea floor spreading provide evidence of past plate motion.	

Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).

Performance Expectation and Louisiana Connectors

8-MS-ESS3-1 Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

LC-8-MS-ESS3-1a Identify explanations of the uneven distributions of Earth's minerals, energy, and groundwater resources due to past and current geoscience processes or by removal of resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL RESOURCES	CAUSE AND EFFECT
designing solutions: Constructing	Humans depend on Earth's land, ocean, atmosphere, and biosphere for many different	Cause and effect
explanations and designing solutions	resources. Minerals, fresh water, and biosphere resources are limited, and many are not	relationships may be
in 6-8 builds on K-5 experiences and	renewable or replaceable over human lifetimes. These resources are distributed unevenly	used to predict
progresses to include constructing	around the planet as a result of past geologic processes. (MS.ESS3A.a)	phenomena in natural
explanations and designing solutions		or designed systems.
supported by multiple sources of	Humans rely on natural resources from the Earth to meet their ever changing needs.	
evidence consistent with scientific	Many of these resources are not renewable or replaceable over a human lifetime.	Cause and effect
ideas, principles, and theories.	Some natural resources, called renewable resources, are naturally replaced in a relatively	relationships may be
 Construct a scientific explanation 	short time.	used to predict
based on valid and reliable evidence	Natural resources that are not replaced as they are used are called non-renewable	phenomena.
obtained from sources (including	resources.	
the students' own experiments) and	Natural resources occur all around the world, but are not distributed evenly.	
the assumption that theories and	In some locations on Earth, where geological processes have concentrated resources, they	
laws that describe the natural world	may be readily available.	
operate today as they did in the past		
and will continue to do so in the	LOUISIANA'S NATURAL RESOURCES	
future.	Non-renewable resources such as our state's fossil fuels are vast but limited. (MS.EVS1A.b)	
Obtain evidence from valid and	Louisiana has a variety of natural resources that are important for human life.	
reliable sources.	Non-renewable resources, like the state's fossil fuels we burn for energy, are not	
Construct a scientific explanation	replaceable over human lifetimes.	
based on evidence.		
Construct a scientific explanation		
based on the assumption that		
theories and laws that describe the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
natural world operate today as they did in the past.		

Clarification Statement
Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by
humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic
marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil
(locations of active weathering and/or deposition of rock).

Performance Expectation and Louisiana Connectors

8-MS-ESS3-2 Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

LC-8-MS-ESS3-2a Use maps, charts, and images of natural hazards to look for patterns in past occurrences of catastrophic events in each of two regions to predict which location may receive a future similar catastrophic event.

LC-8-MS-ESS3-2b Identify technologies that mitigate the effects of natural hazards (e.g., the design of buildings and bridges to resist earthquakes, storm shelters for tornados, levees along rivers to prevent flooding).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	NATURAL HAZARDS	PATTERNS
Analyzing data in 6-8 builds on K-5	Mapping the history of natural hazards in a region, combined with an understanding of	Graphs, charts, and
experiences and progresses to	related geologic forces can help forecast the locations and likelihoods of future events.	images can be used to
extending quantitative analysis to investigations, distinguishing	(MS.ESS3B.a)	identify patterns in data.
between correlation and causation,	Natural processes can cause sudden or gradual changes to Earth's systems.	Graphs can be used to
and basic statistical techniques of	Natural hazards such as earthquakes, tsunamis, volcanic eruptions, severe weather, floods,	identify patterns.
data and error analysis.	and coastal erosion, adversely affect humans.	Charts can be used to
 Analyze and interpret data to 	Studying patterns of natural hazards allow scientists to assess potential risks so	identify patterns.
provide evidence for phenomena.	preparations can be made to minimize the hazards.	Images can be used to
	By mapping the natural events in an area and understanding the geological forces involved,	identify patterns.
Interpret data to provide evidence	future events can be predicted.	
for phenomena.	While humans cannot eliminate natural hazards, they can take steps to reduce their	
Analyze data to provide evidence	impacts.	
for phenomena.		

Clarification Statement

Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).

Performance Expectation and Louisiana Connectors

8-MS-ESS3-3 Apply scientific principles to design a method for monitoring and minimizing human impact on the environment. *LC-8-MS-ESS3-3 Using data from a design solution for minimizing a human impact on the environment, identify limitations of the solution.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	HUMAN IMPACTS ON EARTH'S SYSTEMS	CAUSE AND EFFECT
designing solutions: Constructing	Human activities, globally and locally, have significantly altered the biosphere, sometimes	Relationships can be
explanations and designing solutions	damaging or destroying natural habitats and causing the extinction of other species. But	classified as causal or
in 6-8 builds on K-5 experiences and	changes to Earth's environments can have different impacts (negative and positive) for	correlational, and
progresses to include constructing	different living things. (MS.ESS3C.a)	correlation does not
explanations and designing solutions		necessarily imply
supported by multiple sources of	People can harm Earth's resources in a variety of ways (e.g., polluting, deforestation,	causation. When
evidence consistent with scientific	overhunting, wasting water, and electricity, etc.).	describing relationships
ideas, principles, and theories.	The growth in human activities is stretching natural resources to their limit.	in science, sometimes
• Apply scientific ideas or principles	This may have a negative impact on Earth unless actions are taken to mitigate this impact.	one event or effect is
to design, construct, and/or test a	Some changes to Earth's environment can have a positive impact for living things.	the direct result of
design of an object, tool, process or		another event or effect;
system.	Typically as human populations and per-capita consumption of natural resources increase, so	this is a causal
To design an object tool and see	do the negative impacts on Earth unless the activities and technologies involved are	relationship.
To design an object, tool, process or	engineered otherwise. (MS.ESS3C.b)	14/how docaribing
system, scientists and engineers use		When describing
scientific ideas and principles.	As the human population grows, so does the consumption of natural resources.	relationships in science,
To construct an object, tool, process	As the human population grows, so do the human impacts on the planet.	sometimes two events
or system, scientists and engineers	Some negative effects of human activities are reversible using technology.	or effects can be
use scientific ideas and principles.		described by the
In science and engineering, a design	DEVELOPING POSSIBLE SOLUTIONS	strength (e.g., strong or
plan includes testing an object,	A solution needs to be tested to prove the validity of the design and then modified on the	weak) of their
tool, process or system.	basis of the test results in order to improve it. There are systematic processes for evaluating	relationship; this is a
	solutions with respect to how well they meet the criteria and constraints of a problem.	correlational
	Sometimes parts of different solutions can be combined to create a solution that is better	relationship.
	than any of its predecessors. Models of all kinds are important for testing solutions.	When there is a
	(ETS.MS.1B.a)	correlation between
		events or effects, it does

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
		not automatically mean
	Design solutions must be tested.	that one event or effect
	Tests are often designed to identify failure points or difficulties.	is the direct result of
	Testing a solution involves investigating how well it performs under a range of likely conditions.	another event or effect.
	Solutions are modified on the basis of the test results.	
	Different solutions can be combined to create a better solution.	
	Designing solutions to problems is a systematic process.	
	There are many types of models.	
	Models can be used to investigate how a design might work.	
	Models allow the designer to better understand the features of a design problem.	

Clarification Statement

Examples of the design process may include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts may include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).

Performance Expectation and Louisiana Connectors

8-MS-LS1-4 Construct and use argument(s) based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of survival and successful reproduction of animals and plants respectively. LC-8-MS-LS1-4a Identify behaviors animals engage in (e.g., vocalization) that increase the likelihood of reproduction. LC-8-MS-LS1-4b Identify specialized plant structures (e.g., bright flower parts) that increase the likelihood of reproduction.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	GROWTH AND DEVELOPMENT OF ORGANISMS	CAUSE AND EFFECT
evidence: Engaging in argument	Animals engage in characteristic behaviors that increase the odds of reproduction.	Phenomena may have
from evidence in 6-8 builds on K-5	(MS.LS1B.c)	more than one cause,
experiences and progresses to		and some cause and
constructing a convincing argument	Animals typically have behaviors that increase their likelihood to survive and reproduce.	effect relationships in
that supports or refutes claims for	A stimulus is a signal that causes an organism to react in some way.	systems can only be
either explanations or solutions	A response is an organism's reaction to the stimulus.	described using
about the natural and designed world(s).	An animals response may include external actions, internal changes (e.g., increased heartrate), or both.	probability.
 Construct, use, and/or present an oral and written argument 	There are similarities and differences in how organisms respond to stimuli.	Phenomena may have more than one cause.
supported by empirical evidence	Plants (flowering and non-flowering) reproduce in a variety of ways, sometimes depending on	Some cause and effect
and scientific reasoning to support or refute an explanation or a model	animal behavior and specialized features for reproduction. (MS.LS1B.d)	relationships in systems can only be described
for a phenomenon or a solution to a	Plants reproduce in a variety of ways.	using probability.
problem.	Some plants rely on animals to survive and reproduce, such as brightly colored flowers to attract pollinators.	Some cause and effect relationships are
Use empirical evidence to construct		complex and can only
an argument.	Group behavior has evolved because membership can increase the chances of survival for	be predicted using
Use empirical evidence to support an argument.	individuals and their genetic relatives. (MS.LS2D.a)	probabilities.
Use scientific reasoning to construct	There is usually some advantage to living in a group.	
an argument.	Animals form groups which increase their likelihood to survive and reproduce.	
Use scientific reasoning to support	In herds, some may watch for danger while others feed.	
an argument.	Animals in groups communicate information (e.g., food sources, danger, defending	
Use an argument to support a	themselves) to each other.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
model for a phenomena.	Some animal groups migrate to an area that provides abundant food, or a favorable place	
Use an argument to refute a model	for reproduction, or both.	
for a phenomena.		
Use an argument to support a		
solution to a problem.		
Use an argument to refute a		
solution to a problem.		

Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, or vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds or creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, or hard shells on nuts that squirrels bury.

Performance Expectation and Louisiana Connectors

8-MS-LS1-5 Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. LC-8-MS-LS1-5a Identify a scientific explanation for how environmental factors (e.g., availability of light, space, water, size of habitat) affect the growth of animals and plants.

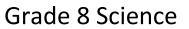
LC-8-MS-LS1-5b Identify a scientific explanation for how genetic factors (e.g., specific breeds of plants and animals and their typical sizes) affect the growth of animals and plants.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	GROWTH AND DEVELOPMENT OF ORGANISMS	CAUSE AND EFFECT
designing solutions: Constructing	Genetic factors as well as local conditions affect the growth of the adult plant. (MS.LS1B.e)	Phenomena may have
explanations (science) and designing		more than one cause,
solutions (engineering) in 6-8 builds	Environmental factors (e.g., availability of light, space, water, size of habitat) affect the	and some cause and
on K-5 experiences and progresses	growth of plants.	effect relationships in
to include constructing explanations	Genetic factors (e.g., specific breeds of plants) affect the growth of plants.	systems can only be
and designing solutions supported	Genetic factors as well as local conditions affect the size of the adult plant.	described using
by multiple sources of evidence		probability.
consistent with scientific ideas,		
principles, and theories.		Phenomena may have
 Construct a scientific explanation 		more than one cause.
based on valid and reliable evidence		Some cause and effect
obtained from sources (including		relationships in systems
the students' own experiments) and		can only be described
the assumption that theories and		using probability.
laws that describe the natural world		Some cause and effect
operate today as they did in the past		relationships are
and will continue to do so in the		complex and can only
future.		be predicted using
		probabilities.
Construct a scientific explanation		
based on evidence.		
Construct a scientific explanation		
based on the assumption that		
theories and laws that describe the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
natural world operate today as they did in the past.		

Clarification Statement
Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed
cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant
growth, different varieties of plant seeds growing at different rates in different conditions, or fish growing larger in large ponds than they do in small ponds.

Performance Expectation and Louisiana Connectors


8-MS-LS3-1 Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

LC-8-MS-LS3-1a Use a model to explain how genetic variations in specific traits may occur as organisms pass on their genetic material from one generation to the next, along with small changes.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	INHERITANCE OF TRAITS	STRUCTURE AND
Modeling in 6-8 builds on K-5	Genes are located in the chromosomes of cells, with each chromosome pair containing two	FUNCTION
experiences and progresses to	variants (alleles) of each of many distinct genes. Each distinct gene chiefly controls the	Complex and
developing, using, and revising	production of specific proteins, which in turn affects the traits of the individual.	microscopic structures
models to describe, test, and predict	(MS.LS3A.a)	and systems can be
more abstract phenomena and		visualized, modeled, and
design systems.	In sexual reproduction after the egg is fertilized, each of the new cells in the developing	used to describe how
 Develop and/or use a model to 	organism receives an exact copy of the genetic information contained in the nucleus of a	their function depends
predict and/or describe phenomena.	fertilized egg.	on the shapes,
	Chromosomes are found in the nucleus of the cell and contain genes that are made of DNA.	composition, and
Models can be used to describe	Inherited traits of individuals are controlled by genes.	relationships among its
phenomena.	Each cell contains two variants of each chromosome, one inherited from each parent.	parts; therefore,
Models can be used to predict phenomena.	An allele is defined as one of a pair of genes that appear at a particular location on a particular chromosome.	complex natural and designed
	Each gene affects the traits of the individual.	structures/systems can
		be analyzed to
	Changes (mutations) to genes can result in changes to proteins, which can affect the	determine how they
	structures and functions of the organism and thereby change traits. (MS.LS3A.b)	function.
	Mutations occur randomly.	Complex structures can
	Mutations can introduce variations in traits.	be visualized.
	Mutations can affect structures and resulting functions of the organism's trait characteristics.	Microscopic structures can be visualized.
		Complex structures can
	VARIATION OF TRAITS	be modeled.
	In addition to variations that arise from sexual reproduction, genetic information can be	Microscopic structures

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	altered because of mutations. Though rare, mutations may result in changes to the structure	can be modeled.
	and function of proteins. Some changes are beneficial, others harmful, and some neutral to	The function of a
	the organism. (MS.LS3B.b)	structure depends on its
		shape.
	Alternative versions of genes (different alleles) account for variations in inherited	The function of a
	characteristics.	structure depends on its
	Traits that have changed can be passed from parent to offspring.	composition.
	Mutations can be inherited.	The function of a
	Mutations can be harmful, neutral, or an advantage for an organism.	structure depends on
		relationships among its
		parts.
		Designed
		structures/systems can
		be analyzed to
		determine how they
		function.

Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins. Examples include radiation treated plants, genetically modified organisms (e.g., roundup resistant crops, bioluminescence), or mutations both harmful and beneficial.

Performance Expectation and Louisiana Connectors

8-MS-LS4-1 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

LC-8-MS-LS4-1a Use data to identify that fossils of different animals that lived at different times are placed in chronological order (i.e., fossil record) and located in different sedimentary layers.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	PATTERNS
Analyzing data in 6-8 builds on K-5	Genetic information provides evidence of evolution. DNA sequences vary among species, but	Graphs, charts, and
experiences and progresses to	there are many overlaps; in fact, the ongoing branching that produces multiple lines of	images can be used to
extending quantitative analysis to	descent can be inferred by comparing the DNA sequences of different organisms. Such	identify patterns in data.
investigations, distinguishing	information is also derivable from the similarities and differences in amino acid sequences	
between correlation and causation,	and from observable anatomical and embryological evidence. (HS.LS4A.a)	Graphs can be used to
and basic statistical techniques of		identify patterns.
data and error analysis.	All living organisms on earth show tremendous differences of form and function.	Charts can be used to
 Analyze and interpret data to 	Scientists can compare DNA sequences to determine how species are related.	identify patterns.
determine similarities and	Scientists can compare protein (i.e., amino acid) sequences to determine how species are	Images can be used to
differences in findings.	related.	identify patterns.
	Genetic information varies among species, but there are many overlaps.	
Use data to determine similarities	Similarities in DNA sequences, anatomical structure, and embryonic development can serve	
in findings.	as evidence of evolution.	
Use data to determine differences	Genetic information, similar structures, embryological development, and fossil evidence	
in findings.	support hypotheses of common ancestry.	

Clarification Statement

Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.

Performance Expectation and Louisiana Connectors

8-MS-LS4-2 Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

LC-8-MS-LS4-2a Recognize that similarities and differences in external structures can be used to infer evolutionary relationships between living and fossil organisms.

LC-8-MS-LS4-2b Identify an explanation of the evolutionary relationships between modern and fossil organisms.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	PATTERNS
designing solutions: Constructing	Anatomical similarities and differences between various organisms living today and between	Patterns can be used to
explanations (science) and designing	them and organisms in the fossil record, enable the reconstruction of evolutionary history and	identify cause and effect
solutions (engineering) in 6-8 builds	the inference of lines of evolutionary descent. (MS.LS4A.b)	relationships.
on K-5 experiences and progresses		
to include constructing explanations	By comparing modern-day organisms to organisms of the past, scientist can infer how	Scientists use patterns
and designing solutions supported	closely related they are in an evolutionary sense (e.g., comparing pictures of an ape,	to identify cause and
by multiple sources of evidence	caveman, and human).	effect relationships.
consistent with scientific ideas,	The Earth's present day species evolved from earlier, distinctly different species.	Identify causes and
principles, and theories.	Similarities and differences in anatomical structures between living organisms and extinct	effects of different
 Apply scientific ideas, principles, 	organisms can serve as evidence of evolution.	phenomena.
and/or evidence to construct, revise	Similarities and differences in anatomical structures between living organisms (e.g., skulls of	
and/or use an explanation for real-	modern crocodiles, skeletons of birds, features of modern whales and elephants) and extinct	
world phenomena, examples, or	organisms (e.g., skulls of fossilized crocodiles and fossilized dinosaurs) can show lines of	
events.	evolutionary descent.	
	More recently deposited rock layers are more likely to contain fossils resembling existing	
Apply scientific ideas to construct	species.	
an explanation of phenomena or		
events.	Comparison of the embryological development of different species also reveals similarities	
Apply scientific principles to	that show relationships not evident in the fully-formed anatomy. (MS.LS4A.c)	
construct an explanation of		
phenomena or events.	Similarities in embryonic development can serve as evidence of the relatedness of different	
Apply scientific evidence to	species.	
construct an explanation of	Similarities in early development stages are evidence that species are related and shared a	
phenomena or events.	common ancestor.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Apply scientific ideas to revise an		
explanation of phenomena or		
events.		
Apply scientific principles to revise		
an explanation of phenomena or		
events.		
Apply scientific evidence to revise		
an explanation of phenomena or		
events.		
Apply scientific ideas to use an		
explanation of phenomena or		
events.		
Apply scientific principles to use an		
explanation of phenomena or		
events.		
Apply scientific evidence to use an		
explanation of phenomena or		
events.		

Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.

Performance Expectation and Louisiana Connectors

8-MS-LS4-3 Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

LC-8-MS-LS4-3a Identify patterns (i.e., pictorial displays, representations, data) in the embryological development as evidence of relationships among species.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	PATTERNS
Analyzing data in 6-8 builds on K-5	Anatomical similarities and differences between various organisms living today and between	Graphs, charts, and
experiences and progresses to	them and organisms in the fossil record, enable the reconstruction of evolutionary history and	images can be used to
extending quantitative analysis to	the inference of lines of evolutionary descent. (MS.LS4A.b)	identify patterns in data.
investigations, distinguishing		
between correlation and causation,	By comparing modern-day organisms, scientists can infer how closely related they are in an	Graphs can be used to
and basic statistical techniques of	evolutionary sense.	identify patterns.
data and error analysis.	The Earth's present day species evolved from earlier, distinctly different species.	Charts can be used to
 Construct, analyze, and/or 	Similarities and differences in anatomical structures between living organisms and extinct	identify patterns.
interpret graphical displays of data	organisms can serve as evidence of evolution.	Images can be used to
and/or large data sets to identify	Similarities and differences in anatomical structures between living organisms and extinct	identify patterns.
linear and nonlinear relationships.	organisms can show lines of evolutionary descent.	
	More recently deposited rock layers are more likely to contain fossils resembling existing species.	
Use graphical display of data to		
define the meaning of linear	Comparison of the embryological development of different species also reveals similarities	
relationships.	that show relationships not evident in the fully-formed anatomy. (MS.LS4A.c)	
Use graphical display of data to		
define the meaning of nonlinear	Similarities in embryonic development can serve as evidence of the relatedness of different	
relationships.	species.	
Use graphical displays of data to	Similarities in early development stages are evidence that species are related and shared a	
identify linear relationships.	common ancestor.	
Use graphical displays of data to		
identify nonlinear relationships.		
Use large data sets to identify		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
linear relationships. Use large data sets to identify nonlinear relationships.		

Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.

Performance Expectation and Louisiana Connectors

8-MS-LS4-6 Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations of species over time.

LC-8-MS-LS4-6a Analyze numerical data sets that represent a proportional relationship between some change in the environment and corresponding changes in genetic variation (i.e., traits) over time.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	ADAPTATION	CAUSE AND EFFECT
computational thinking:	Adaptation by natural selection acting over generations is one important process by which	Phenomena may have
Mathematical and computational	populations change over time in response to changes in environmental conditions. Traits that	more than one cause,
thinking in 6-8 builds on K-5	support successful survival and reproduction in the new environment tend to become more	and some cause and
experiences and progresses to	common; those that do not become less common. Thus, the distribution of traits in a	effect relationships in
identifying patterns in large data	population changes. (MS.LS4C.a)	systems can only be
sets and using mathematical		described using
concepts to support explanations	Some organisms in a population exhibit traits and behaviors that will favor their chance to	probability.
and arguments.	survive and reproduce.	
 Use mathematical representations 	Adaptations are the favorable traits and behaviors, which allow an organism to survive in	Phenomena may have
to describe and/or support scientific	its environment.	more than one cause.
conclusions and design solutions.	Adaptation by natural selection leads to more organisms in a population with traits that	Some cause and effect
	favor the chance to survive and reproduce.	relationships in systems
Use mathematical representations	Inherited traits that aid survival and reproduction are much more likely to become common	can only be described
to describe scientific conclusions.	in a population, than traits that don't aid survival.	using probability.
Use mathematical representations	Species acquire many of their unique characteristics through biological adaptations, which	Some cause and effect
to support scientific conclusions.	involve the selection of naturally occurring variations in populations.	relationships are
Use mathematical representations	These organisms reproduce, develop, have predictable life cycles, and pass on heritable	complex and can only
to describe design solutions.	traits to their offspring.	be predicted using
Use mathematical representations		probabilities.
to support design solutions.		

Clarification Statement

Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time. Students should be able to explain trends in data for the number of individuals with specific traits changing over time.

