

Performance Expectation and Louisiana Connectors

HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.

LC-HS-LS1-1a Relate DNA molecules to the way cells store and use information to guide their functions.

LC-HS-LS1-1b Relate groups of specialized cells (e.g., heart cells, nerve cells, muscle cells, epithelial cells, fat cells, blood cells) within organisms to the performance of essential functions of life.

LC-HS-LS1-1c Identify evidence supporting an explanation of how a substance called DNA carries genetic information in all organisms which codes for the proteins that are essential to an organism.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	STRUCTURE AND FUNCTION	STRUCTURE AND
designing solutions: Constructing	Systems of specialized cells within organisms help them perform the essential functions of	FUNCTION
explanations (science) and designing	life. (HS.LS1A.a)	Investigating or
solutions (engineering) in 9-12		designing new systems
builds on K-8 experiences and	All living things are made of cells.	or structures requires a
progresses to explanations and	In multicellular organisms, the cells are often quite different from each other in size and	detailed examination of
designs that are supported by	structure.	the properties of
multiple and independent student-	The structure of each kind of cell is suited to the unique function it carries out.	different materials, the
generated sources of evidence	Systems of cells, tissues, and organs work together to meet the needs of the whole	structures of different
consistent with scientific ideas,	organism.	components, and
principles, and theories.		connections of
 Construct and revise an 	All cells contain genetic information in the form of DNA molecules. Genes are regions in the	components to reveal
explanation based on valid and	DNA that contain the instructions that code for the formation of proteins which carry out the	its function and/or solve
reliable evidence obtained from a	essential functions of life. (HS.LS1A.c)	a problem.
variety of sources (including		
students' own investigations,	All cells contain DNA.	Designing and/or
models, theories, simulations, peer	DNA contains regions that are called genes.	investigating new
review) and the assumption that	The sequence of genes contains instructions that code for proteins.	structures/systems
theories and laws that describe the	Groups of specialized cells (tissues) use proteins to carry out functions that are essential to	requires knowledge of
natural world operate today as they	the organism.	the properties (e.g.,
did in the past and will continue to		rigidity and hardness)
do so in the future.		of the materials needed
		for specific parts of the

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Construct an explanation based on		structure.
valid and reliable evidence from a		Designing and/or
variety of sources.		investigating new
Construct an explanation based on		structures/systems
valid and reliable evidence from the		requires knowledge of
assumption that theories and laws		the structures of
that describe the natural world		different components.
operate today as they did in the		Designing and/or
past and will continue to do so in		investigating a new
the future.		structure requires a
Revise an explanation based on		detailed examination of
valid and reliable evidence from a		the connections of
variety of sources.		components to reveal
Revise an explanation based on		its function.
valid and reliable evidence from the		Designing and/or
assumption that theories and laws		investigating a new
that describe the natural world		structure requires a
operate today as they did in the		detailed examination of
past and will continue to do so in		the connections of
the future.		components to reveal
-		any problems.

Emphasis is on the conceptual understanding that DNA sequences determine the amino acid sequence and thus protein structure. Students can produce scientific writing, or presentations, and/or physical models that communicate constructed explanations.

Performance Expectation and Louisiana Connectors

HS-LS1-2 Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. LC-HS-LS1-2a Using model(s), identify that different systems of the body carry out essential functions (e.g., digestive system, respiratory system, circulatory system, nervous system).

LC-HS-LS1-2b Using model(s), identify the hierarchical organization of systems that perform specific functions within multicellular organisms.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND FUNCTION	SYSTEMS AND SYSTEM
Modeling in 9-12 builds on K-8	Multicellular organisms have a hierarchical structural organization, in which any one system is	MODELS
experiences and progresses to using	made up of numerous parts and is itself a component of the next level. (HS.LS1A.b)	Models (e.g., physical,
synthesizing and developing models		mathematical,
to predict and show relationships	Cells may be organized into larger structures beginning with tissues and increasing in size	computer models) can
among variables between systems	and complexity to maintain organs, organ-systems, and eventually an organism.	be used to simulate
and their components in the natural	Multicellular organisms have a hierarchical structural organization in which one system is	systems and
and designed world(s).	made of numerous parts.	interactions—including
 Develop, revise, and/or use a 	The hierarchical organization of interacting systems provide specific functions within	energy, matter, and
model based on evidence to	multicellular organisms.	information flows—
illustrate and/or predict the	Models can be used to illustrate how the parts (e.g., organ system, organs, and their	within and between
relationships between systems or	component tissues) and processes (e.g., transport of fluids, motion) of body systems in	systems at different
between components of a system.	multicellular organisms function.	scales.
Develop or use a model to identify		Models can be used to
and describe the components of a		simulate systems.
system.		Models can be used to
Develop or use a model to identify		simulate interactions.
and describe the relationships		Models can be used
between the components of a		simulate interactions
system.		within systems at
Develop or use a model to predict		different scales.
relationships between systems or		Models can be used
within a system.		simulate interactions
Identify that models can help		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		between systems at
systems or within a system.		different scales.

Clarification Statement
Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, or organism movement in response to neural stimuli. An example
of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of
blood within the circulatory system.

Performance Expectation and Louisiana Connectors

HS-LS1-3 Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis in living organisms. *LC-HS-LS1-3a Identify how different organisms react (e.g., heart rate, body temperature) to changes in their external environment. LC-HS-LS1-3b Identify examples of how organisms use feedback mechanisms to maintain dynamic homeostasis.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	STRUCTURE AND FUNCTION	STABILITY AND CHANGE
investigations: Planning and	Feedback mechanisms maintain a living system's internal conditions within certain limits and	Feedback (negative or
carrying out investigations to	mediate behaviors, allowing the organism to remain alive and functional even as external	positive) can stabilize or
answer questions or test solutions	conditions change within some range. Feedback mechanisms can promote (through positive	destabilize a system.
to problems in 9-12 builds on K-8	feedback) or inhibit (through negative feedback) activities within an organism to maintain	
experiences and progresses to	homeostasis. (HS.LS1A.d)	Stability denotes a
include investigations that provide		condition in which a
evidence for and test conceptual,	Organisms' systems can maintain balance (homeostasis) within an organism to ensure its	system is in balance.
mathematical, physical, and	survival.	A feedback loop is any
empirical models.	Positive and negative feedback mechanisms regulate organisms' systems in order to help an	mechanism in which a
 Plan and conduct an investigation 	organism maintain homeostasis.	condition triggers some
individually and collaboratively to	These feedback mechanisms can encourage or discourage physiological responses in living	action that causes a
produce data to serve as the basis	systems.	change in that same
for evidence, and in the design:		condition.
decide on types, how much, and		The mechanisms of
accuracy of data needed to produce		external controls and
reliable measurements and consider		internal feedback loops
limitations on the precision of the		are important elements
data (e.g., number of trials, cost,		for a stable system.
risk, time), and refine the design		A change in one part of
accordingly.		a system can cause
		changes to other parts
Plan an investigation individually		of the system, resulting
and collaboratively to produce data		in positive or negative
to serve as the basis for evidence,		feedback loops.
and in the design: decide on types,		The changes (negative
how much, and accuracy of data		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
needed to produce reliable		or positive) can stabilize
measurements.		or destabilize a system.
Revise an investigation individually		
and collaboratively to produce data		
to serve as the basis for evidence.		
Conduct an investigation		
individually and collaboratively to		
produce data to serve as the basis		
for evidence.		

Clarification Statement

Examples of investigations could include heart rate responses to exercise, stomate responses to moisture and temperature, root development in response to water levels, or cell response to hypertonic and hypotonic environments.

Performance Expectation and Louisiana Connectors

HS-LS1-4 Use a model to illustrate the role of the cell cycle and differentiation in producing and maintaining complex organisms. *LC-HS-LS1-4a Identify how growth and/or maintenance (repair/replacement) occurs when cells multiply (i.e., mitosis) using a model.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	GROWTH AND DEVELOPMENT OF ORGANISMS	SYSTEMS AND SYSTEM
Modeling in 9-12 builds on K-8	In multicellular organisms the cell cycle is necessary for growth, maintenance and repair of	MODELS
experiences and progresses to using,	multicellular organisms. Disruptions in the cell cycles of mitosis and meiosis can lead to	Models (e.g., physical,
synthesizing, and developing models	diseases such as cancer. (HS.LS1B.a)	mathematical,
to predict and show relationships		computer models) can
among variables between systems	Cells undergo a regular sequence of growth and division called the cell cycle.	be used to simulate
and their components in the natural	The amount of time it takes to complete the cell cycle varies in different cells.	systems and
and designed world(s).	Complex multicellular organisms maintain themselves by growing and developing through	interactions—including
 Develop, revise, and/or use a 	cellular divisions (mitosis) and differentiation of cells.	energy, matter, and
model based on evidence to	There are times when cell cycles are disrupted.	information flows—
illustrate and/or predict the	Cancer is a disease that can occur when control of the cell cycle is lost.	within and between
relationships between systems or	Cancer is caused by uncontrolled cell division.	systems at different
between components of a system.		scales.
	The organism begins as a single cell (fertilized egg) that divides successively to produce many	
Develop a model based on evidence	cells, with each parent cell passing identical genetic material (two variants of each	Models can be used to
to illustrate the relationships	chromosome pair) to both daughter cells. (HS.LS1B.b)	simulate systems.
between systems.		Models can be used to
Develop a model based on evidence	During cell division, the organism's genetic material is copied into each new cell.	simulate interactions.
to predict the relationships	Daughter cells receive identical genetic information from a parent cell or a fertilized egg.	Models can be used
between systems.	Mitotic cell division produces two genetically identical daughter cells from one parent cell.	simulate interactions
Develop a model based on evidence	Differences between different cell types within a multicellular organism are due to	within systems at
to illustrate the relationships	differentiated gene expression.	different scales.
between components of a system.		Models can be used
Develop a model based on evidence	Cellular division and differentiation (stem cell) produce and maintain a complex organism,	simulate interactions
to predict the relationships	composed of systems of tissues and organs that work together to meet the needs of the	between systems at
between components of a system.	whole organism. (HS.LS1B.c)	different scales.
Revise a model based on evidence		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
to illustrate the relationships	Cellular division and differentiation are required to meet the needs of living organisms.	
between systems.	Mitotic cell division results in more cells that: 1) allow growth of the organism; 2) can	
Revise a model based on evidence	differentiate to create different cell types; and 3) can replace dead or damaged cells to	
to predict the relationships	maintain a complex organism.	
between systems.	In multicellular organisms, the body is a system of multiple interacting subsystems.	
Revise a model based on evidence	These subsystems are groups of cells that work together to form tissues and organs that are	
to illustrate the relationships	specialized for particular body functions.	
between components of a system.		
Revise a model based on evidence		
to predict the relationships		
between components of a system.		
Use a model based on evidence to		
illustrate the relationships between		
systems.		
Use a model based on evidence to		
predict the relationships between		
systems.		
Use a model based on evidence to		
illustrate the relationships between		
components of a system.		
Use a model based on evidence to		
predict the relationships between		
components of a system.		

Clarification Statement

Emphasis is on conceptual understanding that mitosis passes on genetically identical materials via replication, not on the details of each phase in mitosis.

Performance Expectation and Louisiana Connectors

HS-LS1-5 Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. *LC-HS-LS1-5a Identify model of photosynthesis, which shows the conversion of light energy to stored chemical energy.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	The process of photosynthesis converts light energy to stored chemical energy by converting	Changes of energy and
experiences and progresses to using	carbon dioxide plus water into sugars plus released oxygen. (HS.LS1C.a)	matter in a system can
synthesizing and developing models		be described in terms of
to predict and show relationships	The processes of photosynthesis (making oxygen and sugar) are done in plants,	energy and matter flows
among variables between systems	photosynthetic bacteria and protists.	into, out of, and within
and their components in the natural and designed world.	Photosynthesis transforms light energy into stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen.	that system.
 Develop, revise, and/or use a 	The energy needed for most life is ultimately derived from the sun through photosynthesis.	The processes of energy
model based on evidence to	Plants, algae (including phytoplankton), and other energy fixing microorganisms use	transformation and
illustrate and/or predict the	sunlight, water, and carbon dioxide to facilitate photosynthesis, which stores energy, forms	energy transfer can be
relationships between systems or	plant matter, releases oxygen, and maintains plants' activities.	used to understand the
between components of a system.		changes that take place
		in physical systems.
Develop or use a model to identify		
and describe the components of a		
System. Dovelop or use a model to identify		
and describe the relationships		
hetween the components of a		
system.		
Develop or use a model to predict		
relationships between systems or		
within a system.		
Identify that models can help		
illustrate relationships between		
systems or within a system.		

Emphasis is on illustrating inputs and outputs of matter, the transfer and transformation of energy in photosynthesis by plants, and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, conceptual models, and/or laboratory investigations.

Performance Expectation and Louisiana Connectors

HS-LS1-6 Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.

LC-HS-LS1-6a Using a model(s), identify how organisms take in matter and rearrange the atoms in chemical reactions to form different products allowing for growth and maintenance.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
designing solutions: Constructing	The process of photosynthesis converts light energy to stored chemical energy by converting	Changes of energy and
explanations (science) and designing	carbon dioxide plus water into sugars plus released oxygen. (HS.LS1C.a)	matter in a system can
solutions (engineering) in 9-12		be described in terms of
builds on K-8 experiences and	The processes of photosynthesis (making oxygen and sugar) are done in plants,	energy and matter flows
progresses to explanations	photosynthetic bacteria and protists.	into, out of, and within
and designs that are supported by	Photosynthesis transforms light energy into stored chemical energy by converting carbon	that system.
multiple and independent student-	dioxide plus water into sugars plus released oxygen.	
generated sources of evidence	The energy needed for most life is ultimately derived from the sun through photosynthesis.	The processes of energy
consistent with scientific ideas,	Plants, algae (including phytoplankton), and other energy fixing microorganisms use	transformation and
principles, and theories.	sunlight, water, and carbon dioxide to facilitate photosynthesis, which stores energy, forms	energy transfer can be
 Construct and revise an 	plant matter, releases oxygen, and maintains plants' activities.	used to understand the
explanation based on valid and		changes that take place
reliable evidence obtained from a	The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon	in physical systems.
variety of sources (including	backbones are used to make amino acids and other carbon-based molecules that can be	
students' own investigations,	assembled into larger molecules (such as proteins or DNA) used, for example, to form new	
models, theories, simulations, peer	cells. (HS.LS1C.b)	
review) and the assumption that		
theories and laws that describe the	Molecules combine, break apart, and recombine to form necessary compounds for life.	
natural world operate today as they	The carbon, hydrogen, and oxygen atoms from sugar molecules formed in or ingested by an	
did in the past and will continue to	organism are those same atoms found in its amino acids and other large carbon-based	
do so in the future, and the	molecules.	
assumption that theories and laws	Sugar molecules are composed of carbon, oxygen, and hydrogen.	
that describe the natural world	Amino acids and other carbon-based molecules are composed of carbon, oxygen, and	
operate today as they did in the past	hydrogen.	
and will continue to do so in the		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
future.		
Construct an explanation based on		
valid and reliable evidence from a		
variety of sources.		
Construct an explanation based on		
valid and reliable evidence from the		
assumption that theories and laws		
that describe the natural world		
operate today as they did in the		
past and will continue to do so in		
the future.		
Revise an explanation based on		
valid and reliable evidence from a		
variety of sources.		
Revise an explanation based on		
valid and reliable evidence from the		
assumption that theories and laws		
that describe the natural world		
operate today as they did in the		
past and will continue to do so in		
the future.		

Emphasis is on students constructing explanations for how sugar molecules are formed through photosynthesis and the components of the reaction (i.e., carbon, hydrogen, oxygen). This hydrocarbon backbone is used to make amino acids and other carbon-based molecules that can be assembled (anabolism) into larger molecules (such as proteins or DNA). Examples of models could include diagrams, chemical equations, or conceptual models.

Performance Expectation and Louisiana Connectors

HS-LS1-7 Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy.

LC-HS-LS1-7a Using a model(s), identify respiration as the transfer of stored energy to the cell to sustain life's processes (i.e., energy to muscles or energy for maintaining body temperature).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	ORGANIZATION FOR MATTER AND ENERGY FLOW IN ORGANISMS	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	As matter and energy flow through different organizational levels of living systems, chemical	Energy cannot be
experiences and progresses to using	elements are recombined in different ways to form different products. (HS.LS1C.c)	created or destroyed—it
synthesizing and developing models		only moves between
to predict and show relationships	Energy drives the cycling of matter within and between systems.	one place and another
among variables between systems	All organisms take in matter and rearrange the atoms in chemical reactions.	place, between objects
and their components in the natural	The process of creating the compounds needed for life is done by organisms at a cellular	and/or fields, or
and designed world(s).	level.	between systems.
 Develop, revise, and/or use a 	Chemical reactions can create products that are more complex than the reactants.	
model based on evidence to	Chemical reactions involve changes in the energies of the molecules involved in the reaction.	Energy cannot be
illustrate and/or predict the		created or destroyed.
relationships between systems or	As a result of these chemical reactions, energy is transferred from one system of interacting	Energy can be
between components of a system.	molecules to another. Cellular respiration is a chemical process in which the bonds of food	transferred from one
	molecules and oxygen molecules are broken and new compounds are formed that can	object to another and
Develop a model based on evidence	transport energy to muscles. Cellular respiration also releases the energy needed to maintain	can be transformed
to illustrate the relationships	body temperature despite ongoing energy transfer to the surrounding environment.	from one form to
between systems.	(HS.LS1C.d)	another, but the total
Develop a model based on evidence		amount of energy never
to predict the relationships	The process of cellular respiration (making energy from sugar) is done in plants and	changes.
between systems.	animals.	
Develop a model based on evidence	Cellular respiration in plants and animals involves chemical reactions with oxygen that	
to illustrate the relationships	release stored energy.	
between components of a system.	In cellular respiration, complex molecules containing carbon react with oxygen to produce	
Develop a model based on evidence	carbon dioxide and other materials.	
to predict the relationships	Cellular respiration also releases the energy needed to maintain body temperature.	
between components of a system.		

Science and Engineering Practice Disciplinary Core Idea	crosscutting concept
Revise a model based on evidence	
to illustrate the relationships	
between systems.	
Revise a model based on evidence	
to predict the relationships	
between systems.	
Revise a model based on evidence	
to illustrate the relationships	
between components of a system.	
Revise a model based on evidence	
to predict the relationships	
between components of a system.	
Use a model based on evidence to	
illustrate the relationships between	
systems.	
Use a model based on evidence to	
predict the relationships between	
systems.	
Use a model based on evidence to	
illustrate the relationships between	
components of a system.	
Use a model based on evidence to	
predict the relationships between	
components of a system.	

Emphasis is on the conceptual understanding of the inputs and outputs of the processes of aerobic and anaerobic cellular respiration. Examples of models could include diagrams, chemical equations, conceptual models and/or laboratory investigations.

Performance Expectation and Louisiana Connectors

HS-LS1-8 Obtain, evaluate, and communicate information about (1) viral and bacterial reproduction and adaptation, (2) the body's primary defenses against infection, and (3) how these features impact the design of effective treatment.

LC-LS1-8a Identify the process by which a virus uses a host cell's functions to make new viruses.

LC-LS1-8b Recognize that most bacteria reproduce asexually resulting in two cells exactly like the parent cell.

LC-LS1-8c Identify ways to protect against infectious diseases to maintain a body's health (e.g., eat nutritious food, washing hands, rest, exercise, etc.). LC-LS1-8d Identify treatments and/or prevention of viral and/or bacterial infections (e.g., antibiotics and vaccines).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	PUBLIC HEALTH	SCALE, PROPORTION,
communicating information:	Viruses are obligate intracellular parasites that replicate using a cell's protein expression	AND QUANTITY
Obtaining, evaluating, and	mechanisms. (HS.LS1E.a)	The significance of a
communicating information in 9-12		phenomenon is
builds on K-8 experiences and	Viruses are considered nonliving because they are not composed of cells.	dependent on the scale,
progresses to evaluating the validity	Viruses do not use energy to grow or respond to their surroundings.	proportion, and quantity
and reliability of the claims,	Obligate intracellular parasites cannot reproduce outside their host cell.	at which it occurs.
methods, and designs.	An obligate intracellular parasite is entirely reliant on intracellular resources.	
 Critically read scientific literature 	Obligate intracellular parasites of humans include viruses.	The size and time scales
adapted for classroom use to		relevant to various
determine the central ideas or	Vaccines provide immunity to infections by exposing the immune system to antigens before	objects, systems, and
conclusions and/or to obtain	infection which decreases the immune system's response time. Some vaccines may require	processes determine
scientific and/or technical	more than one dose. (HS.LS1E.b)	the significance of a
information to summarize complex		phenomena.
evidence, concepts, processes, or	A vaccine is a substance that stimulates the body to produce chemicals that destroy viruses,	Specific phenomena
information by presenting them in	bacteria, or other disease-causing organisms.	correspond to a specific
simpler but still accurate terms.	Vaccines can prevent some viral and bacterial diseases.	scale (e.g., the size of
	Vaccines are important tools to prevent the spread of infectious diseases.	the nucleus of an atom
Engage in a critical reading of		to the size of the galaxy
primary scientific literature	Antibiotics are effective treatments against most bacterial infections. Some bacteria may	and beyond).
(adapted for classroom use) to	develop resistance to these treatments. (HS.LS1E.c)	
determine the central ideas to		
summarize complex evidence,	An antibiotic is a chemical that can kill bacteria without harming a person's cells.	
concepts, processes, or information	Bacterial diseases can be treated with antibiotics.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
by presenting them in simpler but	Resistant bacteria are able to survive in the presence of an antibiotic.	
still accurate terms.	Those bacteria survive and reproduce.	
Engage in a critical reading of	Today, many resistant bacteria exist.	
primary scientific literature		
(adapted for classroom use) to	Microorganisms can cause diseases and can provide beneficial services. Microorganisms live	
determine the conclusions to summarize complex evidence,	in a variety of environments as both parasites and free-living organisms. (HS.LS1E.d)	
concepts, processes, or information	Parasites are organisms that live on or in a host and causes harm to the host.	
by presenting them in simpler but	Parasites and other microorganisms can cause disease.	
still accurate terms.	Microorganisms can provide beneficial services.	
Engage in a critical reading of	Bacteria are involved in fuel and food production, environmental recycling and cleanup, and	
primary scientific literature	the production of medicines.	
(adapted for classroom use) to	Microorganisms live in a variety of environments.	
obtain scientific information to	Microorganisms can be both parasites and free-living organisms.	
summarize complex evidence,		
concepts, processes, or information	Microorganisms can reproduce quickly. (HS.LS1E.e)	
by presenting them in simpler but		
still accurate terms.	Microorganisms can reproduce quickly. Some bacteria can reproduce as often as once every	
Engage in a critical reading of	20 minutes.	
primary scientific literature		
(adapted for classroom use) to		
obtain technical information to		
summarize complex evidence,		
concepts, processes, or information		
by presenting them in simpler but		
still accurate terms.		

Clarification Statement

Emphasis is on the speed of reproduction which produces many generations in a short time, allowing for rapid adaptation, the role of antibodies in the body's immune response to infection and how vaccination protects an individual from infectious disease.

Performance Expectation and Louisiana Connectors

HS-LS2-1 Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity, biodiversity and populations of ecosystems at different scales.

LC-HS-LS2-1a Recognize that the carrying capacities of ecosystems are related to the availability of living and nonliving resources and challenges (e.g., predation, competition, disease).

LC-HS-LS2-1b Use a graphical representation to identify carrying capacities in ecosystems as limits to the numbers of organisms or populations they can support.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	SCALE, PROPORTION,
computational thinking:	Ecosystems have carrying capacities, which are limits to the numbers of organisms and	AND QUANTITY
Mathematical and computational	populations they can support. These limits result from such factors as the availability of living	The significance of a
thinking in 9-12 builds on K-8	and nonliving resources and from such challenges as predation, competition, and disease that	phenomenon is
experiences and progresses to using	affect biodiversity, including genetic diversity within a population and species diversity within	dependent on the scale,
algebraic thinking and analysis, a	an ecosystem. Organisms would have the capacity to produce populations of great size were	proportion, and quantity
range of linear and nonlinear	it not for the fact that environments and resources are finite. This fundamental tension	at which it occurs.
functions (e.g., trigonometric,	affects the abundance (number of individuals) of species in any given ecosystem. (HS.LS2A.a)	
exponential and logarithmic) and		The size and time scales
computational tools for statistical	Carrying capacities are limits to the numbers of organisms and populations an ecosystem	relevant to various
analysis to analyze, represent, and	can support.	objects, systems, and
model data. Simple computational	The carrying capacity for a specific population in an ecosystem depends on the resources	processes determine
simulations are created and used	available.	the significance of a
based on mathematical models of	These limits can be a result of shifting living (predators, competition, and available food)	phenomena.
basic assumptions.	and non-living (shelter, water, and climate) factors within a specific environment.	Specific phenomena
 Use mathematical, computational, 	Given adequate biotic and abiotic resources and no disease or predators, populations	correspond to a specific
and/or algorithmic representations	increase at rapid rates.	scale (e.g., the size of
of phenomena or design solutions to	Resources, (limiting factors), predation and climate, limit the growth of populations in	the nucleus of an atom
describe and/or support claims	specific niches in an ecosystem.	to the size of the galaxy
and/or explanations.		and beyond).
	Human activity directly and indirectly affect biodiversity and ecosystem health (e.g., habitat	
Use mathematical or algorithmic	fragmentation, introduction of nonnative or invasive species, overharvesting, pollution and	
forms for scientific modeling of	climate change). (HS.LS2A.b)	
phenomena and/or design		

Disciplinary Core Idea	Crosscutting Concept
Humans are an integral part of the natural system, and human activities can alter the	
stability of ecosystems.	
Human-related changes to one or more of these factors can result in an ecosystem breaking	
down or the creation of an entirely new ecosystem.	
Human activities have a major effect on other species. For example, increased land use	
reduces habitat available to other species, pollution changes the chemical composition of	
air, soil, and water, and introduction of non-native species disrupts the ecological balance.	
	Disciplinary Core Idea Humans are an integral part of the natural system, and human activities can alter the stability of ecosystems. Human-related changes to one or more of these factors can result in an ecosystem breaking down or the creation of an entirely new ecosystem. Human activities have a major effect on other species. For example, increased land use reduces habitat available to other species, pollution changes the chemical composition of air, soil, and water, and introduction of non-native species disrupts the ecological balance.

Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate and competition. Examples of mathematical comparisons could include graphs, charts, histograms, or population changes gathered from simulations or historical data sets.

Performance Expectation and Louisiana Connectors

HS-LS2-4 Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. *LC-HS-LS2-4a Use a graphical or mathematical representation to identify the changes in the amount of matter as it travels through a food web. LC-HS-LS2-4b Use a graphical or mathematical representation to identify the changes in the amount of energy as it travels through a food web.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	CYCLES OF MATTER AND ENERGY TRANSFER IN ECOSYSTEMS	ENERGY AND MATTER:
computational thinking:	Energy is inefficiently transferred from one trophic level to another that affect the relative	FLOWS, CYCLES, AND
Mathematical and computational	number of organisms that can be supported at each trophic level and necessitates a constant	CONSERVATION
thinking in 9-12 builds on K-8	input of energy from sunlight or inorganic compounds from the environment. (HS.LS2B.b)	Energy cannot be
experiences and progresses to using	Only a fraction of the energy available at the lower level of a food web is transferred up,	created or destroyed—it
algebraic thinking and analysis, a	resulting in fewer organisms at higher levels.	only moves between
range of linear and nonlinear	The inefficiency of energy transfer determines the number of trophic levels and affects the	one place and another
functions (e.g., trigonometric,	relative number of organisms at each trophic level in an ecosystem.	place, between objects
exponential and logarithmic) and	All energy is conserved as it passes from the sun through an ecosystem.	and/or fields, or
computational tools for statistical	During energy transformations, some energy is converted to unusable heat.	between systems.
analysis to analyze, represent, and	A continual input of energy from the sun keeps the process going.	
model data. Simple computational	On average, regardless of scale, 10% of energy is transferred up from one trophic level to	Energy cannot be
simulations are created and used	another.	created or destroyed.
based on mathematical models of		Energy can be
basic assumptions.	Photosynthesis, cellular respiration, decomposition and combustion are important	transferred from one
 Use mathematical, computational, 	components of the carbon cycle, in which carbon is exchanged among the biosphere,	object to another and
and/or algorithmic representations	atmosphere, hydrosphere, and geosphere through chemical, physical, geological, and	can be transformed
of phenomena or design solutions to	biological processes. (HS.LS2B.c)	from one form to
describe and/or support claims	Carbon is an essential element cycled through all levels of life from cellular to ecosystems	another, but the total
and/or explanations.	and is required for survival of all living organisms.	amount of energy never
	Photosynthesis (the main way that solar energy is captured and stored on Earth) and	changes.
Use mathematical or algorithmic	cellular respiration are important components of the carbon cycle, in which carbon is	
forms for scientific modeling of	exchanged between living and nonliving systems.	
phenomena and/or design	Matter needed to sustain life in ecosystems is continually recycled (e.g., carbon cycle, water	
solutions to describe claims.	cycle, nitrogen cycle, mineral cycles) among organisms and between organisms and the	
Use mathematical or algorithmic	environment.	
forms for scientific modeling of		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
phenomena and/or design	Photosynthesis, chemosynthesis, aerobic and anaerobic respiration and cellular respiration	
solutions to support claims.	(including anaerobic processes) provide most of the energy for life processes. Environmental	
Use mathematical or algorithmic	conditions restrict which and when reactions can occur. (HS.LS2B.a) (suggested extension)	
forms for scientific modeling of	The processes of photosynthesis (making oxygen and sugar) and cellular respiration	
phenomena and/or design	(making energy from sugar done in plants and animals) provide most of the energy for life	
solutions to describe explanations.	on earth.	
Use mathematical or algorithmic	The reactants and products of photosynthesis and cellular respiration (aerobic and	
forms for scientific modeling of	anaerobic) can be used to relate the Law of Conservation of Matter and the Law of	
phenomena and/or design	Conservation of Energy to ecosystems, using the carbon cycle can as a reference.	
solutions to support explanations.		

Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen, and nitrogen being conserved as they move through an ecosystem.

Performance Expectation and Louisiana Connectors

HS-LS2-6 Evaluate the claims, evidence and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.

LC-HS-LS2-6a Use evidence to identify how modest biological or physical changes versus extreme changes affect stability and change (e.g., number and types of organisms) in ecosystems.

LC-HS-LS2-6b Evaluate explanations of how living things in an ecosystem are affected by changes in the environment (e.g., changes to the food supply, climate change, or the introduction of predators).

LC-HS-LS2-6c Evaluate explanations of how interactions in ecosystems maintain relatively stable conditions, but changing conditions may result in a new ecosystem.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
evidence: Engaging in argument	The dynamic interactions within an ecosystem can keep its numbers and types of organisms	Much of science deals
from evidence in 9-12 builds on K-8	relatively constant over long periods of time under stable conditions. If a modest biological or	with constructing
experiences and progresses to using	physical disturbance to an ecosystem occurs, it may return to its more or less original status	explanations of how
appropriate and sufficient evidence	(i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme	things change and how
and scientific reasoning to defend	fluctuations in conditions or the size of any population, however, can challenge the	they remain stable.
and critique claims and explanations	functioning of ecosystems in terms of resources and habitat availability and may result in new	
about the natural and designed	ecosystems. (HS.LS2C.a)	Science deals with
world(s). Arguments may also come		constructing
from current scientific or historical	Under most circumstances, a natural balance is maintained within an ecosystem.	explanations of how
episodes in science.	Organisms both cooperate and compete in ecosystems.	things change.
 Evaluate the claims, evidence, 	The interrelationships and interdependencies of these organisms may generate complex	Science deals with
and/or reasoning	ecosystems that are stable over long periods of time and tend to have cyclic fluctuations	constructing
behind currently accepted	around an equilibrium (i.e., the ecosystem is resilient).	explanations of how
explanations or solutions	Extreme fluctuations, such as from natural disasters, can challenge the functioning of	things remain stable.
to determine the merits of	ecosystems in terms of resources and habitat availability.	
arguments.	These changes can result in an ecosystem breaking down or the creation of an entirely new	
	ecosystem.	
Evaluate the claims behind		
currently accepted explanations to		
determine the merits of arguments.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Evaluate the claims behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted solutions to		
determine the merits of arguments.		

Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood and extreme changes, such as volcanic eruption or sea level rise. Emphasis should be on describing drivers of ecosystem stability and change, not on the organismal mechanisms of responses and interactions.

Performance Expectation and Louisiana Connectors

HS-LS2-7 Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity. LC-HS-LS2-7a Describe how people can help protect the Earth's environment and biodiversity (e.g., preserving ecosystems) and how a human activity would threaten Earth's environment and biodiversity (e.g., pollution, damaging habitats, over hunting). LC-HS-LS2-7b Evaluate or refine a solution to changes in an ecosystem (biodiversity) resulting from a human activity.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
designing solutions: Constructing	Ecosystems with a greater biodiversity tend to have a greater resistance and resilience to	Much of science deals
explanations (science) and designing	change. Moreover, anthropogenic changes (induced by human activity) in the environment—	with constructing
solutions (engineering) in 9-12	including habitat destruction, pollution, introduction of invasive species, overexploitation, and	explanations of how
builds on K-8 experiences and	climate change—can disrupt an ecosystem and threaten the survival of some species.	things change and how
progresses to explanations and	(HS.LS2C.b)	they remain stable.
designs that are supported by		
multiple and independent student-	Biodiversity helps maintain stability in ecosystems.	Science deals with
generated sources of evidence	However, factors caused by humans (e.g., habitat destruction, pollution, introduction of	constructing
consistent with scientific ideas,	invasive species) have negative effects on the environment and biodiversity.	explanations of how
principles, and theories.	Some system changes are irreversible.	things change.
 Design, evaluate, and/or refine a 		Science deals with
solution to a complex real-world	BIODIVERSITY AND HUMANS	constructing
problem, based on scientific	Biodiversity is increased by the formation of new species (speciation) and decreased by the	explanations of how
knowledge, student-generated	loss of species (extinction). Humans depend on the living world for the resources and other	things remain stable.
sources of evidence, prioritized	benefits provided by biodiversity. Human activity is also having adverse impacts on	
criteria, and trade-off	biodiversity through overpopulation, overexploitation, habitat destruction, pollution,	
considerations.	introduction of invasive species, and climate change. Thus, sustaining biodiversity so that	
	ecosystem functioning and productivity are maintained is essential to supporting and	
Design a solution to a complex real-	enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of	
world problem, based on scientific	recreational or inspirational value. (HS.LS4D.a)	
knowledge, student-generated		
sources of evidence, prioritized	Humans depend on the living world for resources.	
criteria, and trade-off	Thus, protecting the environment and biodiversity helps sustain human life.	
considerations.	Ecosystems undergo major changes as a result of such human-related factors as	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Evaluate a solution to a complex	overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive	
real-world problem, based on	species, and climate change.	
scientific knowledge, student-	Sustainability of human societies and the biodiversity that supports them require	
generated sources of evidence,	responsible management of natural resources.	
prioritized criteria, and trade-off considerations.	Changes in the physical, chemical, or biological conditions of an ecosystem can alter the diversity of species in the system.	
Refine a solution to a complex real-	Over time, ecosystems change and populations of organisms adapt, move, or become	
world problem, based on scientific	extinct.	
knowledge, student-generated		
sources of evidence, prioritized	DEVELOPING POSSIBLE SOLUTIONS	
criteria, and trade-off	When evaluating solutions it is important to take into account a range of constraints including	
considerations.	cost, safety, reliability and aesthetics and to consider social, cultural and environmental	
	impacts. (HS.ETS1B.a)	
	It is important to determine the full impact of the advantages and disadvantages when	
	evaluating a solution.	
	The development of solutions is driven by the following factors: economical, political,	
	cultural, social, safety, and environmental.	

Examples of human activities can include urbanization, building dams, or dissemination of invasive species.

Performance Expectation and Louisiana Connectors

HS-LS3-1 Formulate, refine, and evaluate questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.

LC-HS-LS3-1a Identify that DNA molecules in all cells contain the instructions for traits passed from parents to offspring.

LC-HS-LS3-1b Identify appropriate questions about the relationships between DNA and chromosomes and how traits are passed from parents to offspring.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Asking questions and defining	STRUCTURE AND FUNCTION	CAUSE AND EFFECT
problems: Asking questions	All cells contain genetic information in the form of DNA molecules. Genes are regions in the	Empirical evidence is
(science) and defining problems	DNA that contain the instructions that code for the formation of proteins which carry out the	required to differentiate
(engineering) in 9-12 builds on K-8	essential functions of life. (HS.LS1A.c)	between cause and
experiences and progresses to		correlation and make
formulating, refining, and evaluating	All cells contain DNA.	claims about specific
empirically testable questions and	DNA contains regions that are called genes.	causes and effects.
design problems using models and	The sequence of genes contains instructions that code for proteins.	
simulations.	Groups of specialized cells (tissues) use proteins to carry out functions that are essential to	Evidence is required
 Ask questions that arise from 	the organism.	when attributing an
examining models or a theory, to		observed phenomenon
clarify and/or seek additional	INHERITANCE OF TRAITS	to a specific cause.
information and relationships.	Each chromosome consists of a single very long DNA molecule, and each gene on the	Evidence is required to
	chromosome is a particular segment of that DNA. The instructions for forming species'	explain the causal
Ask questions that arise from	characteristics are carried in DNA. All cells in an organism have the same genetic content, but	mechanisms in a system
examining models to clarify	the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes	under study.
relationships.	for a protein; some segments of DNA are involved in regulatory or structural functions, and	Evidence is required to
Ask questions that arise from	some have no as-yet known function. (HS.LS3A.a)	support a claim about
examining models to seek		the causal mechanisms
additional information.	All cells contain genetic information in the form of DNA molecules.	in a system under
Ask questions that arise from	DNA molecules contain the instructions for forming species' characteristics.	study.
examining a theory to clarify	All cells in an organism have the same genetic content.	
relationships.	There are several types of DNA, including DNA that codes for proteins, DNA that is involved	
Ask questions that arise from	in regulatory or structural functions (cell membrane proteins, cyclins), and DNA that has no	
	known function (introns).	

	-	
Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
examining a theory to seek additional information.	In Mendel's model of inheritance an organism's phenotype is determined by the combined expression of two inherited versions they have for each gene. However, most traits follow more complex patterns of inheritance such as traits that are codominant, incomplete dominant, and polygenic. (HS.LS3A.b)	
	One allele is provided by each parent of an offspring. In complete dominance, a recessive trait can be carried by an organism. Following this mode of inheritance, a recessive trait will be masked (or will not be apparent) if the dominant allele is present.	

Clarification Statement

Emphasis should be on traits including completely dominant, codominant, incompletely dominant, and sex-linked traits (e.g., pedigrees, karyotypes, genetic disorders, Punnett squares). Examples do not need to include dihybrid crosses.

Performance Expectation and Louisiana Connectors

HS-LS3-2 Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.

LC-HS-LS3-2a Identify a model showing evidence that parents and offspring may have different traits.

LC-HS-LS3-2b Identify that meiosis is a process which distributes genetic material among the new cells (i.e., gametes) produced, which results in genetic variation.

LC-HS-LS3-2c Identify that when DNA makes a copy of itself, sometimes errors occur that may lead to genetic variations.

LC-HS-LS3-2d Identify examples of mutations in DNA caused by environmental factors.

LC-HS-LS3-2e Use evidence to support a claim about a source of inheritable genetic variations.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	VARIATION OF TRAITS	CAUSE AND EFFECT
evidence: Engaging in argument	In sexual reproduction, chromosomes can sometimes swap sections or cross over during the	Empirical evidence is
from evidence in 9-12 builds on K-8	process of meiosis (cell division), thereby creating new genetic combinations and thus more	required to differentiate
experiences and progresses to using	genetic variation. Although DNA replication is tightly regulated and remarkably accurate,	between cause and
appropriate and sufficient evidence	errors do occur and result in mutations, which are also a source of genetic variation.	correlation and make
and scientific reasoning to defend	Environmental factors can also cause mutations in genes, and viable mutations are inherited.	claims about specific
and critique claims and explanations	(HS.LS3B.a)	causes and effects.
about the natural and designed		
world(s). Arguments may also come	New genetic combinations lead to increased genetic variation.	Evidence is required
from current scientific or historical	New genetic combinations are the result of:	when attributing an
episodes in science.	• sexual reproduction,	observed phenomenon
 Make and defend a claim based on 	 crossing over and random assortment during meiosis, 	to a specific cause.
evidence about the natural world or	 mutations due to errors in DNA replication, or 	Evidence is required to
the effectiveness of a design	• environmental influences.	explain the causal
solution that reflects scientific		mechanisms in a system
knowledge and student-generated	Mutations may occur due to errors during DNA replication and/or environmental factors. In	under study.
evidence.	general, only mutations that occur in gametes (sperm and egg) can be passed to offspring.	Evidence is required to
	Genes have variations (alleles) that code for specific variants of a protein (or RNA), and	support a claim about
Make and defend a claim based on	therefore specific traits of an individual. (HS.LS3B.b)	the causal mechanisms
evidence about the natural world		in a system under
that reflects scientific knowledge	Genes play an important role in shaping how organisms look and act (specific traits of an	study.
and student-generated evidence.	individual).	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Make and defend a claim based on	Mutations can be passed to offspring from parents (i.e., mutations that occur in gametes).	
evidence about the effectiveness of	Common changes in genes are responsible for many of the normal variations between	
a design solution that reflects	people such as eye color, hair color, and blood type.	
scientific knowledge and student-	Many common mutations have no negative effects on a person's health.	
generated evidence.		
	Environmental factors also affect expression of traits, and hence affect the probability of	
	occurrences of traits in a population. Thus the variation and distribution of traits observed	
	depends on both genetic and environmental factors. (HS.LS3B.c)	
	Environmental factors (climate, diet, pollution, lifestyle) have influence on gene expression.	
	Mutations can also occur when cells are aging or have been exposed to certain chemicals or radiation.	
	Inheritable genetic variations may result from new genetic combinations through meiosis,	
	viable errors occurring during replication, and/or mutations caused by environmental	
	factors.	

Clarification Statement

Emphasis is on using data to support arguments for the way variation occurs. Claims should not include the phases of meiosis or the biochemical mechanisms of specific steps in the process.

Performance Expectation and Louisiana Connectors

HS-LS3-3 Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. LC-HS-LS3-3a Calculate the probability (e.g., two out of four) of a particular trait in an offspring based on a completed Punnett square. LC-HS-LS3-3b Identify examples, using data, of environmental factors which affect the expression of traits, and so then affect the probability of occurrences of traits in a population.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	VARIATION OF TRAITS	SCALE, PROPORTION,
Analyzing data in 9-12 builds on K-8	In sexual reproduction, chromosomes can sometimes swap sections or cross over during the	AND QUANTITY
experiences and progresses to	process of meiosis (cell division), thereby creating new genetic combinations and thus more	Algebraic thinking is
introducing more detailed statistical	genetic variation. Although DNA replication is tightly regulated and remarkably accurate,	used to examine
analysis, the comparison of data	errors do occur and result in mutations, which are also a source of genetic variation.	scientific data and
sets for consistency, and the use of	Environmental factors can also cause mutations in genes, and viable mutations are inherited.	predict the effect of a
models to generate and analyze	(HS.LS3B.a)	change in one variable
data.		on another (e.g., linear
 Apply concepts of statistics and 	New genetic combinations lead to increased genetic variation.	growth vs. exponential
probability (e.g., determining	New genetic combinations are the result of:	growth).
function fits to data and correlation	• sexual reproduction,	
coefficient for linear or nonlinear	 crossing over and random assortment during meiosis, 	Examine scientific data
fits) to scientific and engineering	 mutations due to errors in DNA replication, or 	to predict the effect of a
questions and problems, using	• environmental influences.	change in one variable
digital tools when feasible.		on another.
	Mutations may occur due to errors during DNA replication and/or caused by environmental	Algebraic thinking can
Apply concepts of statistics and	factors. In general, only mutations that occur in gametes (sperm and egg) can be passed to	be used to explore
probability (e.g., determining	offspring. Genes have variations (alleles) that code for specific variants of a protein (or RNA),	complex mathematical
function fits to data and correlation	and therefore specific traits of an individual. (HS.LS3B.b)	relationships in science
coefficient for linear or nonlinear		(e.g., the difference
fits) to scientific questions and	Genes play an important role in shaping how organisms look and act (specific traits of an	between linear growth
problems, using digital tools when	individual).	and exponential
feasible.	Mutations can be passed to offspring from parents (i.e., mutations that occur in gametes).	growth).
Apply concepts of statistics and	Common changes in genes are responsible for many of the normal variations between	
probability (e.g., determining		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
function fits to data and correlation coefficient for linear or nonlinear fits) to engineering questions and problems, using digital tools when feasible.	people such as eye color, hair color, and blood type. Many common mutations have no negative effects on a person's health.	

Clarification Statement
Emphasis is on distribution and variation of traits in a population and the use of mathematics (e.g., calculations of frequencies in Punnett squares, graphical
representations) to describe the distribution.

Performance Expectation and Louisiana Connectors

HS-LS4-1 Analyze and interpret scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. *LC-HS-LS4-1a Identify patterns (e.g., DNA sequences, fossil records) as evidence to a claim of common ancestry*.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EVIDENCE OF COMMON ANCESTRY AND DIVERSITY	PATTERNS
Analyzing data in 9-12 builds on K-8	Genetic information provides evidence of evolution. DNA sequences vary among species, but	Different patterns may
experiences and progresses to	there are many overlaps; in fact, the ongoing branching that produces multiple lines of	be observed at each of
introducing more detailed statistical	descent can be inferred by comparing the DNA sequences of different organisms. Such	the scales at which a
analysis, the comparison of data	information is also derivable from the similarities and differences in amino acid sequences	system is studied and
sets for consistency, and the use of	and from observable anatomical and embryological evidence. (HS.LS4A.a)	can provide evidence for
models to generate and analyze		causality in explanations
data.	Evolution is a change in allelic frequencies of a population over time.	of phenomena.
 Compare and contrast various 	Highly similar DNA sequences among species leads to anatomical similarities and provides	
types of data sets (e.g., self-	evidence of evolution.	Patterns can be used to
generated, archival) to examine	Organisms are classified into a hierarchy of groups and subgroups based on similarities in	explain phenomena.
consistency of measurements and	structure, comparisons in DNA and protein and evolutionary relationships.	Different patterns can
observations.	Differences in DNA sequences among species contributes to the diversity of living things.	be observed at different
	The theory of evolution is supported by extensive biochemical, structural, embryological,	scales (micro and
Compare and contrast various types	and fossil evidence.	macro) in a system.
of data sets (e.g., self-generated,		Classifications used at
archival) to examine consistency of		one scale may fail or
measurements.		need revision when
Compare and contrast various types		information from
of data sets (e.g., self-generated,		smaller or larger scales
archival) to examine consistency of		is introduced.
observations.		

Clarification Statement

Emphasis is on a conceptual understanding of the role each line of evidence (e.g., similarities in DNA sequences, order of appearance of structure during embryological development, cladograms, homologous and vestigial structures, fossil records) demonstrates as related to common ancestry and biological evolution.

Performance Expectation and Louisiana Connectors

HS-LS4-2 Construct an explanation based on evidence that biological diversity is influenced by (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.

LC-HS-LS4-2a Recognize that as a species grows in number, competition for limited resources also increases.

LC-HS-LS4-2b Recognize that different individuals have specific traits that give advantages (e.g., survive and reproduce at higher rates) over other individuals in the species.

LC-HS-LS4-2c Identify how evolution may be a result of genetic variation through mutations and sexual reproduction in a species that is passed on to their offspring.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL SELECTION	CAUSE AND EFFECT
designing solutions: Constructing	Natural selection occurs only if there is both (1) variation in the genetic information between	Empirical evidence is
explanations (science) and designing	organisms in a population (e.g., mutations and sexual reproduction), and (2) variation in the	required to differentiate
solutions (engineering) in 9-12	expression of that genetic information—that is, trait variation—that leads to differences in	between cause and
builds on K-8 experiences and	performance among individuals. Natural selection leads to populations that have more	correlation and make
progresses to explanations and	individuals with behavioral, anatomical, and physiological adaptations. (HS.LS4B.a)	claims about specific
designs that are supported by		causes and effects.
multiple and independent student-	Biological traits become either more or less common in a population through the process of	
generated sources of evidence	natural selection.	Evidence is required
consistent with scientific ideas,	Different factors (including mutations and sexual reproduction) contribute to variation in a	when attributing an
principles, and theories.	population and that natural selection can influence frequencies of heritable traits by	observed phenomenon
 Construct and revise an 	providing survival advantages to some individuals.	to a specific cause.
explanation based on valid and	Four factors primarily influence evolution: (1) the potential for a species to increase in	Evidence is required to
reliable evidence obtained from a	number, (2) the genetic variation of individuals in a species due to mutation and sexual	explain the causal
variety of sources (including	reproduction, (3) competition for an environment's limited supply of the resources that	mechanisms in a system
students' own investigations,	individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those	under study.
models, theories, simulations, peer	organisms that are better able to survive and reproduce in that environment.	Evidence is required to
review) and the assumption that		support a claim about
theories and laws that describe the	The traits that positively affect survival are more likely to be reproduced, and thus are more	the causal mechanisms
natural world operate today as they	common in the population. (HS.LS4B.c)	in a system under
did in the past and will continue to		study.
do in the future.	Offspring with advantageous adaptations are more likely to survive and reproduce, thus	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	increasing the proportion of individuals within a population with advantageous	
Construct an explanation based on	characteristics.	
valid and reliable evidence from a		
variety of sources.		
Construct an explanation based on		
valid and reliable evidence from the		
assumption that theories and laws		
that describe the natural world		
operate today as they did in the		
past and will continue to do so in		
the future.		
Revise an explanation based on		
valid and reliable evidence from a		
variety of sources.		
Revise an explanation based on		
valid and reliable evidence from the		
assumption that theories and laws		
that describe the natural world		
operate today as they did in the		
past and will continue to do so in		
the future.		

Emphasis is on using evidence to explain the influence each of the four factors has on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs or proportional reasoning.

Performance Expectation and Louisiana Connectors

HS-LS4-3 Apply concepts of statistics and probability to support explanations that populations of organisms adapt when an advantageous heritable trait increases in proportion to organisms lacking this trait.

LC-HS-LS4-3a Use patterns in data to identify how heritable variations in a trait may lead to an increasing proportion of individuals within a population with that trait (i.e., an advantageous characteristic).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	NATURAL SELECTION	PATTERNS
Analyzing data in 9-12 builds on K-8	Natural selection occurs only if there is both (1) variation in the genetic information between	Different patterns may
experiences and progresses to	organisms in a population (e.g., mutations and sexual reproduction), and (2) variation in the	be observed at each of
introducing more detailed statistical	expression of that genetic information—that is, trait variation—that leads to differences in	the scales at which a
analysis, the comparison of data	performance among individuals. Natural selection leads to populations that have more	system is studied and
sets for consistency, and the use of	individuals with behavioral, anatomical, and physiological adaptations. (HS.LS4B.a)	can provide evidence for
models to generate and analyze		causality in explanations
data.	Biological traits become either more or less common in a population through the process of	of phenomena.
 Apply concepts of statistics and 	natural selection.	
probability (e.g., determining	Different factors (including mutations and sexual reproduction) contribute to variation in a	Patterns can be used to
function fits to data and correlation	population and that natural selection can influence frequencies of heritable traits by	explain phenomena.
coefficient for linear or nonlinear	providing survival advantages to some individuals.	Different patterns can
fits) to scientific and engineering	Four factors primarily influence evolution: (1) the potential for a species to increase in	be observed at different
questions and problems, using	number, (2) the genetic variation of individuals in a species due to mutation and sexual	scales (micro and
digital tools when feasible.	reproduction, (3) competition for an environment's limited supply of the resources that	macro) in a system.
	individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those	Classifications used at
Apply concepts of statistics and	organisms that are better able to survive and reproduce in that environment.	one scale may fail or
probability (e.g., determining		need revision when
function fits to data and correlation	The traits that positively affect survival are more likely to be reproduced, and thus are more	information from
coefficient for linear or nonlinear	common in the population. (HS.LS4B.c)	smaller or larger scales
fits) to scientific questions and	Offspring with advantageous adaptations are more likely to survive and reproduce, thus	is introduced.
problems, using digital tools when	increasing the proportion of individuals within a population with advantageous	
feasible.	characteristics.	
Apply concepts of statistics and		
probability (e.g., determining		
function fits to data and correlation	Natural selection leads to adaptation that is, to a population dominated by organisms that are	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
coefficient for linear or nonlinear fits) to engineering questions and problems, using digital tools when feasible.	anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. (HS.LS4C.a) <i>The inheritance of certain traits can lead to a competitive advantage for certain organisms in a population.</i> <i>Advantages lead to increased survival and/or reproductive rates within the population.</i> <i>Natural selection leads to adaptation in a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment.</i>	
	Adaptation also means that the distribution of traits in a population can change when conditions change. (HS.LS4C.b) Natural selection causes shifts in the frequency of traits within a population over time. Relationships between biotic and abiotic differences in ecosystems and their contributions to a change in gene frequency over time, leads to adaptation of populations, and thus, proportional increases in organisms with advantageous heritable traits.	

Clarification Statement

Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations for adaptations. Explanations could include basic statistical or graphical analysis.

Performance Expectation and Louisiana Connectors

HS-LS4-4 Construct an explanation based on evidence for how natural selection and other mechanisms lead to genetic changes in populations. LC-HS-LS4-4a Use data to provide evidence for how specific biotic or abiotic differences in ecosystems (e.g., ranges of seasonal temperature, acidity, light, geographic barriers) support the claim that organisms with an advantageous heritable trait are better able to survive over time.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL SELECTION	CAUSE AND EFFECT
designing solutions: Constructing	Natural selection occurs only if there is both (1) variation in the genetic information between	Empirical evidence is
explanations (science) and designing	organisms in a population (e.g., mutations and sexual reproduction), and (2) variation in the	required to differentiate
solutions (engineering) in 9-12	expression of that genetic information—that is, trait variation—that leads to differences in	between cause and
builds on K-8 experiences and	performance among individuals. Natural selection leads to populations that have more	correlation and make
progresses to explanations and	individuals with behavioral, anatomical, and physiological adaptations. (HS.LS4B.a)	claims about specific
designs that are supported by		causes and effects.
multiple and independent student-	Biological traits become either more or less common in a population through the process of	
generated sources of evidence	natural selection.	Evidence is required
consistent with scientific ideas,	Different factors (including mutations and sexual reproduction) contribute to variation in a	when attributing an
principles, and theories.	population and that natural selection can influence frequencies of heritable traits by	observed phenomenon
 Construct and revise an 	providing survival advantages to some individuals.	to a specific cause.
explanation based on valid and	Four factors primarily influence evolution: (1) the potential for a species to increase in	Evidence is required to
reliable evidence obtained from a	number, (2) the genetic variation of individuals in a species due to mutation and sexual	explain the causal
variety of sources (including	reproduction, (3) competition for an environment's limited supply of the resources that	mechanisms in a system
students' own investigations,	individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those	under study.
models, theories, simulations, peer	organisms that are better able to survive and reproduce in that environment.	Evidence is required to
review) and the assumption that		support a claim about
theories and laws that describe the	Genetic drift and gene flow can lead to genetic changes in populations, not adaptations.	the causal mechanisms
natural world operate today as they	(HS.LS4B.b)	in a system under
did in the past and will continue to		study.
do so in the future.	Other factors that influence evolution include: sexual selection, mutation, genetic drift, and	
	genetic modification.	
Construct an explanation based on	Genetic drift is a mechanism of evolution that affects the genetic makeup of the population	
valid and reliable evidence from a	through a random process. It does not produce adaptations.	
variety of sources.	Gene flow moves alleles between populations. Migration is a common way gene flow	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Construct an explanation based on	occurs.	
valid and reliable evidence from the		
assumption that theories and laws	ADAPTATION	
that describe the natural world	Natural selection leads to adaptation that is, to a population dominated by organisms that are	
operate today as they did in the	anatomically, behaviorally, and physiologically well suited to survive and reproduce in a	
past and will continue to do so in	specific environment. That is, the differential survival and reproduction of organisms in a	
the future.	population that have an advantageous heritable trait leads to an increase in the proportion of	
Revise an explanation based on	individuals in future generations that have the trait and to a decrease in the proportion of	
valid and reliable evidence from a	individuals that do not. (HS.LS4C.a)	
variety of sources.	The inheritance of certain traits can lead to a competitive advantage for certain organisms	
Revise an explanation based on	in a population.	
valid and reliable evidence from the	Advantages lead to increased survival and/or reproductive rates within the population.	
assumption that theories and laws	Natural selection leads to adaptation in a population dominated by organisms that are	
that describe the natural world	anatomically, behaviorally, and physiologically well suited to survive and reproduce in a	
operate today as they did in the	specific environment.	
past and will continue to do so in		
the future.	Changes in the physical environment, whether naturally occurring or human induced, have	
	thus contributed to the expansion of some species, the emergence of new distinct species as	
	populations diverge under different conditions, and the decline—and sometimes the	
	extinction-of some species. (HS.LS4C.c)	
	Environmental changes have a strong influence on the evolutionary process.	
	Changes in the physical environment, naturally occurring or human induced, contribute to	
	changes in biodiversity. Changes may include species expansion, invasive species, and extinction.	
	Possible outcomes of human interactions include changes in the number of individuals of	
	some species, emergence of new species over time, and the extinction of other species.	

Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency over time, leading to adaptation of populations.

Performance Expectation and Louisiana Connectors

HS-LS4-5 Evaluate evidence supporting claims that changes in environmental conditions can affect the distribution of traits in a population causing: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.

LC-HS-LS4-5a Identify the relationship between naturally occurring or human-induced changes in the environment (e.g., drought, flood, deforestation, fishing, application of fertilizers) and the expression of traits in a species (e.g., peppered moth studies).

LC-HS-LS4-5b Identify the relationship between naturally occurring or human-induced changes in the environment (e.g., drought, flood, deforestation, fishing, application of fertilizers) and the emergence of new species over time.

LC-HS-LS4-5c Identify that species become extinct because they can no longer survive and reproduce given changes in the environment.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ADAPTATION	CAUSE AND EFFECT
evidence: Engaging in argument	Changes in the physical environment, whether naturally occurring or human-induced, have	Empirical evidence is
from evidence in 9-12 builds on K-8	thus contributed to the expansion of some species, the emergence of new distinct species as	required to differentiate
experiences and progresses to using	populations diverge under different conditions, and the decline–and sometimes the	between cause and
appropriate and sufficient evidence	extinction-of some species. (HS.LS4C.c)	correlation and make
and scientific reasoning to defend		claims about specific
and critique claims and explanations	Environmental changes have a strong influence on the evolutionary process.	causes and effects.
about the natural and designed	Changes in the physical environment, naturally occurring or human-induced, contribute to	
world(s). Arguments may also come	changes in biodiversity. Changes may include species expansion, invasive species, and	Evidence is required
from current scientific or historical	extinction.	when attributing an
episodes in science.	Possible outcomes of human interactions include changes in the number of individuals of	observed phenomenon
 Evaluate the claims, evidence, 	some species, emergence of new species over time, and the extinction of other species.	to a specific cause.
and/or reasoning behind currently		Evidence is required to
accepted explanations or solutions	Species become extinct because they can no longer survive and reproduce in their altered	explain the causal
to determine the merits of	environment. If members cannot adjust to change that is too fast or drastic, the opportunity	mechanisms in a system
arguments.	for the species' evolution is lost. (HS.LS4C.d)	under study.
		Evidence is required to
Evaluate the claims behind	When a physical change to an organism's environment is sudden and/or extreme, a species	support a claim about
currently accepted explanations to	becomes extinct when they are no longer able to survive and reproduce.	the causal mechanisms
determine the merits of arguments.	Thus, drastic changes to an environment limits the possibilities of species' evolution.	in a system under
Evaluate the claims behind		study.
currently accepted solutions to		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted solutions to		
determine the merits of arguments.		
		1

Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, overfishing, application of fertilizers, drought, flood, and the rate of change of the environment affect distribution or disappearance of traits in species.

