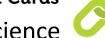


Performance Expectation and Louisiana Connectors

HS-PS1-1 Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level and the composition of the nucleus of atoms.

LC-HS-PS1-1a Identify the periodic table as a model to use to predict the properties of elements.

LC-HS-PS1-1b Identify that the periodic table was created based on the patterns of electrons in the outermost energy level of atoms.


LC-HS-PS1-1c Identify that the number of electrons in the outermost energy level of atoms impacts the behavior of the element.

LC-HS-PS1-1d Identify the periodic table as a model that predicts the number of electrons and other subatomic particles.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
Modeling in 9-12 builds on K-8	Each atom has a charged substructure consisting of a nucleus, which is made of protons and	Different patterns may
experiences and progresses to using,	neutrons, surrounded by electrons. (HS.PS1A.a)	be observed at each of
synthesizing, and developing models		the scales at which a
to predict and show relationships	Atoms are the basic unit of a chemical element.	system is studied and
among variables between systems	Atoms are made of subatomic particles: protons, neutrons, and electrons.	can provide evidence for
and their components in the natural	Atoms have a nucleus.	causality in explanations
and designed worlds.	The nucleus of an atom is made of positively charged protons and neutrons, which have no	of phenomena.
 Develop, revise, and/or use a 	net charge.	
model based on evidence to	A positively charged nucleus is surrounded by smaller negatively charged electrons.	Patterns can be used to
illustrate and/or predict the		explain phenomena.
relationships between systems or	The periodic table orders elements horizontally by the number of protons in the atom's	Different patterns can
between components of a system.	nucleus and places those with similar chemical properties in columns. The repeating patterns	be observed at
	of this table reflect patterns of outer electron states. (HS.PS1A.b)	different scales (micro
Use a model based on evidence to		and macro) in a system.
identify and describe the	Electrons in the outermost energy level are called valence electrons.	Classifications used at
components of a system.	The periodic table of elements is an arrangement of the chemical elements ordered by	one scale may fail or
Use a model based on evidence to	atomic number or the number of protons in atoms.	need revision when
identify and describe the	The periodic table is used to predict the patterns of behavior of elements.	information from
relationships between the	The arrangement of the groups of the periodic table reflects the patterns of electrons in the	smaller or larger scales
components of a system.	outermost energy level of atoms, and therefore, the chemical properties of the elements in	is introduced.
Use a model based on evidence to	each group.	
predict relationships between	The atomic mass listed for each element on the periodic table corresponds to the relative	
systems or within a system.	abundance of that element's different isotopes.	

Ph	ysical	Science	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Identify that models can help illustrate relationships between systems or within a system.	TYPES OF INTERACTIONS Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (HS.PS2B.c)	
	The patterns and behaviors of elements are based on the attraction and repulsion between electrically charged particles and the patterns of the outermost electrons. The reactivity and electronegativity of atoms can be determined by an element's location on the periodic table and its valence electrons attraction to the nucleus. The number and types of bonds formed by an element and between elements, the number and charges of stable ions, and the relative sizes of atoms can be determined by an element's location on the periodic table.	

Clarification Statement		
Physical Science Examples of properties that could be predicted from patterns could inclumed and the predicted from patt		
Chemistry	Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, atomic radius, atomic mass, or reactions with oxygen. Emphasis is on main group elements and qualitative understanding of the relative trends of ionization energy and electronegativity.	

Performance Expectation and Louisiana Connectors

HS-PS1-2 Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.

LC-HS-PS1-2a Identify an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms.

LC-HS-PS1-2b Identify an explanation for the outcome of a simple chemical reaction based on trends in the periodic table.

LC-HS-PS1-2c Construct an explanation for the outcome of a simple chemical reaction based on the chemical properties of the elements involved.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	STRUCTURE AND PROPERTIES OF MATTER	PATTERNS
designing solutions: Constructing	The periodic table orders elements horizontally by the number of protons in the atom's	Different patterns may
explanations (science) and designing	nucleus and places those with similar chemical properties in columns. The repeating patterns	be observed at each of
solutions (engineering) in 9-12	of this table reflect patterns of outer electron states. (HS.PS1A.b)	the scales at which a
builds on K-8 experiences and		system is studied and
progresses to explanations and	Electrons in the outermost energy level are called valence electrons.	can provide evidence for
designs that are supported by	The periodic table of elements is an arrangement of the chemical elements ordered by	causality in explanations
multiple and independent student-	atomic number as determined by an atoms number of protons.	of phenomena.
generated sources of evidence	The periodic table is used to predict the patterns of behavior of elements.	
consistent with scientific ideas,	The arrangement of the groups of the periodic table reflects the patterns of electrons in the	Patterns can be used to
principles, and theories.	outermost energy level of atoms, and therefore, the chemical properties of the elements in	explain phenomena.
 Construct and revise an 	each group.	Different patterns can
explanation based on valid and	The atomic mass listed for each element on the periodic table corresponds to the relative	be observed at
reliable evidence obtained from a	abundance of that element's different isotopes.	different scales (micro
variety of sources (including		and macro) in a system.
students' own investigations,	CHEMICAL REACTIONS	Classifications used at
models, theories, simulations, peer	The fact that atoms are conserved, together with knowledge of the chemical properties of the	one scale may fail or
review) and the assumption that	elements involved, can be used to describe and predict chemical reactions. (HS.PS1B.c)	need revision when
theories and laws that describe the		information from
natural world operate today as they	A chemical reaction is the process in which substances undergo chemical changes that	smaller or larger scales
did in the past and will continue to	results in the formation of new substances.	is introduced.
do so in the future.	Atoms are conserved in chemical reactions.	
	Predicting involves making an inference about a future event based on evidence.	
Construct an explanation based on		
valid and reliable evidence from a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Science and Engineering Practice variety of sources. Construct an explanation based on valid and reliable evidence from the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Revise an explanation based on valid and reliable evidence from a variety of sources. Revise an explanation based on valid and reliable evidence from the assumption that theories and laws that describe the natural world operate today as they did in	Disciplinary Core Idea An element's chemical and physical properties can be predicted knowing only its position on the periodic table.	Crosscutting Concept
the past and will continue to do so in the future.		

Clarification Statement		
	Examples of chemical reactions could include the reaction of sodium and	
Dhysical Science	chlorine, carbon and oxygen, or hydrogen and oxygen. Reaction classification	
Physical Science	includes synthesis, decomposition, single displacement, double displacement,	
	and acid-base.	
	Examples of chemical reactions could include the reaction of sodium and	
Chamister	chlorine, carbon and oxygen, or carbon and hydrogen. Reaction classification	
Chemistry	aids in the prediction of products (e.g., synthesis, decomposition, single	
	displacement, double displacement, and acid-base).	

Performance Expectation and Louisiana Connectors

HS-PS1-7 Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. LC-HS-PS1-7a Identify a chemical equation, and identify the reactants and products which support the claim that matter (i.e., atoms) is neither created or destroyed in a chemical reaction.

LC-HS-PS1-7b Identify a mathematical representation (e.g., table, graph) or pictorial depictions that illustrates the claim that mass is conserved during a chemical reaction.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	CHEMICAL REACTIONS	ENERGY AND MATTER
computational thinking:	The fact that atoms are conserved, together with knowledge of the chemical properties of the	The total amount of
Mathematical and computational	elements involved, can be used to describe and predict chemical reactions. (HS.PS1B.c)	energy and matter in
thinking in 9-12 builds on K-8		closed systems is
experiences and progresses to using	A chemical reaction is the process in which substances undergo chemical changes that	conserved.
algebraic thinking and analysis, a	results in the formation of new substances.	
range of linear and nonlinear	Atoms are conserved in chemical reactions.	When materials
functions, including computational	Predicting involves making an inference about a future event based on evidence.	interact within a closed
tools for statistical analysis to	An element's chemical and physical properties can be predicted knowing only its position	system, the total mass
analyze, represent, and model data.	on the periodic table.	of the system remains
Simple computational simulations	The periodic table can be used to predict the outcome of chemical reactions.	the same.
are created and used based on		When materials
mathematical models of basic		interact within a closed
assumptions.		system, energy may
• Use mathematical, computational,		change forms, but the
and/or algorithmic representations		total amount of energy
of phenomena or design solutions to		within the system
describe and/or support claims		remains the same.
and/or explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
design solutions to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement		
Physical ScienceEmphasis is on using mathematical ideas to communicate the relationship between masses of reactants and products as well as balancing chemical equations.		
Chemistry	Emphasis is on using mathematical ideas as they relate to stoichiometry to communicate the proportional relationships between masses of atoms in the reactants and the products, and the translation of these relationships to the macroscopic scale using the mole as the conversion from the atomic to the	

Clarification Statement	
	macroscopic scale. Emphasis is on assessing students' use of mathematical thinking and not on memorization and rote application of problem-solving
	techniques.

S Component Cards Physical Science

Performance Expectation and Louisiana Connectors

HS-PS1-8 Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

LC-HS-PS1-8a Identify models that illustrate nuclear processes (i.e., fusion, fission, and radioactive decays), involve the release or absorption of energy. LC-HS-PS1-8b Contrast changes during the processes of alpha, beta, or gamma radioactive decay using graphs or pictorial depictions of the composition of the nucleus of the atom and the energy released.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	NUCLEAR PROCESSES	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve	In nuclear processes,
experiences and progresses to using,	release or absorption of energy. The total number of neutrons plus protons does not change	atoms are not
synthesizing, and developing models	in any nuclear process. (HS.PS1C.a)	conserved, but the total
to predict and show relationships		number of protons plus
among variables between systems	Fission, fusion, and radioactive decay (alpha, beta, and gamma) are nuclear processes.	neutrons is conserved.
and their components in the natural	Nuclear fission and fusion reactions release energy.	
and designed world(s).	In fission reactions, an atom is split into two or more smaller atoms.	The total number of
 Develop, revise, and/or use a 	In fusion reactions, two smaller atoms fuse together to create a heavier atom.	protons plus neutrons is
model based on evidence to	When a nuclear process takes place, radioactive particles and/or gamma radiation may be	the same before and
illustrate and/or predict the	produced.	after nuclear processes
relationships between systems or	Radioactive decay is the breakdown of an atomic nucleus resulting in the release of energy	occur.
between components of a system.	and matter from the nucleus.	
	The total number of neutrons plus protons is the same both before and after the nuclear	
Develop or use a model to identify	process of radioactive decay.	
and describe the components of a	Typically nuclear processes release much more energy per atom involved than do chemical	
system.	processes.	
Develop or use a model to identify	The energy that is released or absorbed during nuclear processes are harmful to human	
and describe the relationships	tissues.	
between the components of a		
system.		
Develop or use a model to predict		
relationships between systems or		
within a system.		
Identify that models can help		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		
systems or within a system.		

Clarification Statement	
Physical Science	Emphasis is only on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds of transformations. Radioactive decay focus is on its relationship to half-life.
Chemistry	Emphasis is on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds of transformations. Emphasis is on alpha, beta, and gamma radioactive decays.

Performance Expectation and Louisiana Connectors

HS-PS2-1 Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

LC-HS-PS2-1a Predict changes in the motion of a macroscopic object, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force using data (e.g., tables or graphs of position or velocity as a function of time for an object subject to a net unbalanced force).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	FORCES AND MOTION	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Newton's second law accurately predicts changes in the motion of macroscopic objects.	Empirical evidence is
experiences and progresses to	(HS.PS2.A.a)	required to differentiate
introducing more detailed statistical		between cause and
analysis, the comparison of data	Unbalanced forces applied to an object will cause acceleration.	correlation and make
sets for consistency, and the use of	The size of this acceleration is determined by the mass of the object and the size of force	claims about specific
models to generate and analyze	applied.	causes and effects.
data.	Forces might change the motion of objects (e.g., During tug-of-war, if forces on opposite	
 Analyze data using tools, 	teams are equal, the rope will not move.).	Evidence is required
technologies, and/or models (e.g.,	Forces change the motion of objects. Newton's Laws can be used to predict these changes.	when attributing an
computational, mathematical) in	Newton's second law describes the effects of the size of the total force and the object's	observed phenomenon
order to make valid and reliable	mass on its resulting acceleration.	to a specific cause.
scientific claims or determine an	The reason why objects may react differently to equal sized forces is explained by Newton's	Evidence is required to
optimal design solution.	second law.	explain the causal
		mechanisms in a system
Analyze data using tools in order to		under study.
make valid and reliable scientific		Evidence is required to
claims.		support a claim about
Analyze data using tools in order to		the causal mechanisms
determine an optimal design		in a system under
solution.		study.
Analyze data using technology in		
order to make valid and reliable		
scientific claims.		
Analyze data using technology in		
order to determine an optimal		

Disciplinary Core Idea	Crosscutting Concept
	Disciplinary Core Idea

Clarification Statement		
Physical Science	Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force. Emphasis is on one-dimensional motion and macroscopic objects moving at nonrelativistic speeds.	
Chemistry	Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force. Emphasis is on kinematics, one-dimensional motion, two-dimensional motion, and macroscopic objects moving at non-relativistic speeds.	

Performance Expectation and Louisiana Connectors

HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

LC-HS-PS2-2a Identify an example of the law of conservation of momentum (e.g., in a collision, the momentum change of an object is equal to and opposite of the momentum change of the other object) represented using graphical or visual displays (e.g., pictures, pictographs, drawings, written observations, tables, charts).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	FORCES AND MOTION	SYSTEMS AND SYSTEM
computational thinking:	Momentum is defined for a particular frame of reference; it is the mass times the velocity of	MODELS
Mathematical and computational	the object. In any system, total momentum is always conserved. (HS.PS2A.b)	When investigating or
thinking in 9-12 builds on K-8		describing a system, the
experiences and progresses to using	Momentum is the product of an object's mass and its velocity.	boundaries and initial
algebraic thinking and analysis, a	Momentum is determined by the speed of an object and the direction it is traveling	conditions of the system
range of linear and nonlinear	(velocity) of an object and the object's mass.	need to be defined and
functions, including computational	The momentum of an object is in the same direction as its velocity.	their inputs and outputs
tools for statistical analysis to	The more momentum an object has, the harder it is to stop.	analyzed and described
analyze, represent, and model data.	The Law of Conservation of Momentum can be used to predict the outcomes of collisions	using models.
Simple computational simulations	between objects and can aid in understanding the energy transfers and energy	
are created and used based on	transformations in these collisions.	Making models helps
mathematical models of basic		people understand
assumptions.	If a system interacts with objects outside itself, the total momentum of the system can	things they cannot
• Use mathematical, computational,	change; however, any such change is balanced by changes in the momentum of objects	observe directly.
and/or algorithmic	outside the system. (HS.PS2A.c)	Scientists use models to
representations of phenomena or		represent things that
design solutions to	Momentum is conserved as long as there are no new objects added to the system.	are either very large or
describe and/or support claims	The total momentum of any group of objects remains the same unless outside forces act on	very small.
and/or explanations.	the object.	Any model of a system
	Only unbalanced forces can change the momentum of an object.	incorporates
Use mathematical or algorithmic	An impulse represents how much the momentum of an object changes when a force acts on	assumptions and
forms for scientific modeling of	it over a period of time.	approximations (e.g.,
phenomena to describe claims.		the boundaries and
Use mathematical or algorithmic		initial conditions of the

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
forms for scientific modeling of	The impulse describes the relationship between the force acting on an object and the	system, inputs and
design solutions to describe claims.	change it produces in the object's momentum.	outputs).
Use mathematical or algorithmic		It is critical to be aware
forms for scientific modeling of		of a system's physical,
phenomena to support claims.		chemical, biological,
Use mathematical or algorithmic		and social interactions
forms for scientific modeling of		and how they affect the
design solutions to support claims.		model's reliability and
Use mathematical or algorithmic		precision.
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement	
Physical Science	Emphasis is on calculating momentum and the qualitative meaning of
	conservation of momentum. Emphasis is on the quantitative conservation of momentum in interactions and
Chemistry	the qualitative meaning of this principle as well as systems of two macroscopic
	bodies moving in one dimension.

Performance Expectation and Louisiana Connectors

HS-PS2-3 Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. LC-HS-PS2-3a Evaluate a device (e.g., football helmet or a parachute) designed to minimize force by comparing data (i.e., momentum, mass, velocity, force, or time).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	FORCES AND MOTION	
designing solution: Constructing	If a system interacts with objects outside itself, the total momentum of the system can	
explanations (science) and designing	change; however, any such change is balanced by changes in the momentum of objects	
solutions (engineering) in 9-12	outside the system. (HS.PS2A.c)	
builds on K-8 experiences and		
progresses to explanations and	Momentum is conserved as long as there are no new objects added to the system.	
designs that are supported by	The total momentum of any group of objects remains the same unless outside forces act on	
multiple and independent student-	the object.	
generated sources of evidence	Only unbalanced forces can change the momentum of an object.	
consistent with scientific ideas,	An impulse represents how much the momentum of an object changes when a force acts on	
principles, and theories.	it over a periods of time.	
 Design, evaluate, and/or refine a 	The impulse describes the relationship between the force acting on an object and the	
solution to a complex real-world	change it produces in the object's momentum.	
problem, based on scientific		
knowledge, student-generated	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
sources of evidence, prioritized	Criteria and constraints also include satisfying any requirements set by society, such as taking	
criteria, and tradeoff considerations.	issues of risk mitigation into account, and they should be quantified to the extent possible	
	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
Design a solution to a complex real-		
world problem, based on scientific	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
knowledge, student-generated	the design of the device.	
sources of evidence, prioritized	The social, economic, and political forces of a society have a significant influence on what	
criteria, and tradeoff	science and technology solutions are implemented.	
considerations.		
Evaluate a solution to a complex	OPTIMIZING THE DESIGN SOLUTION	
real-world problem, based on	Criteria may need to be broken down into simpler ones that can be approached	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff	systematically, and decisions about the priority of certain criteria over others (tradeoffs) may be needed. (HS.ETS1C.a)	
considerations. Refine a solution to a complex real- world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	It is important to prioritize the benefits and costs of the design of a solution to a problem. The decision as to which criteria are critical and which ones can be traded off is a judgment based on the situation and the needs of the system.	

Clarification Statement		
Physical Science	Examples of evaluation and refinement could include determining the success of a device at protecting an object from damage such as, but not limited to, impact resistant packaging and modifying the design to improve it. Emphasis is on qualitative evaluations.	
Chemistry	Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it by applying the impulse-momentum theorem. Examples of a device could include a football helmet or an airbag. Emphasis is on qualitative evaluations and/or algebraic manipulations.	

Performance Expectation and Louisiana Connectors

HS-PS2-5 Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

LC-HS-PS2-5a Identify situations and provide evidence where an electric current is producing a magnetic field. LC-HS-PS2-5b Identify situations and provide evidence where a magnetic field is producing an electric current.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	TYPES OF INTERACTIONS	CAUSE AND EFFECT
Investigations: Planning and	Forces that act over a distance are explained by fields (gravitational, electric, and magnetic)	Empirical evidence is
carrying out investigations to	permeating space that can transfer energy through space. Magnets or electric currents cause	required to differentiate
answer questions or test solutions	magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS.PS2B.b)	between cause and
to problems in 9-12 builds on K-8		correlation and make
experiences and progresses to	Moving electric charges produce magnetic fields; changing magnetic fields induce electric	claims about specific
include investigations that provide	currents.	causes and effects.
evidence for and test conceptual,	An electric field is the field around a charged particle that exerts a force on other charged	
mathematical, physical, and	particles.	Evidence is required
empirical models.	A magnetic field is a region around a magnet in which a magnetic force acts. (It is not	when attributing an
 Plan and conduct an investigation 	always an attraction, sometimes it is a repulsion.)	observed phenomenon
individually and collaboratively to	Moving electric charges produce magnetic fields.	to a specific cause.
produce data to serve as the basis	Electrical energy carried by currents in wires can be used to create magnetic fields.	Evidence is required to
for evidence, and in the design:	Magnets and rotating coils can be used to create electric currents.	explain the causal
decide on types, how much, and		mechanisms in a system
accuracy of data needed to produce	DEFINITIONS OF ENERGY	under study.
reliable measurements and consider	"Electrical energy" may mean energy stored in a battery or energy transmitted by electric	Evidence is required to
limitations on the precision of the	currents. (HS.PS3A.d)	support a claim about
data (e.g., number of trials, cost,		the causal mechanisms
risk, time), and refine the design	Electrical energy is a form of energy that can be transferred by moving charges through a	in a system under
accordingly.	complete circuit.	study.
	A battery is a combination of two or more electrochemical cells in a series.	
Plan an investigation individually	Batteries are portable sources of electrical energy.	
and collaboratively to produce data		
to serve as the basis for evidence,		
and in the design: decide on types,		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
how much, and accuracy of data		
needed to produce reliable		
measurements.		
Revise an investigation individually		
and collaboratively to produce data		
to serve as the basis for evidence.		
Conduct an investigation		
individually and collaboratively to		
produce data to serve as the basis		
for evidence.		

Clarification Statement		
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the relationship between a current-carrying wire and a magnetic compass.	
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.	

Performance Expectation and Louisiana Connectors

HS-PS3-2 Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles/objects and energy associated with the relative positions of particles/objects.

LC-HS-PS3-2a Identify that two factors, an object's mass and height above the ground, affect gravitational potential energy (i.e., energy stored due to position of an object above Earth) at the macroscopic level.

LC-HS-PS3-2b Identify that the mass of an object and its speed determine the amount of kinetic energy the object possesses.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	DEFINITIONS OF ENERGY	ENERGY AND MATTER
Developing and using models:	Energy is a quantitative property of a system that depends on the motion and interactions of	Energy cannot be
Modeling in 9-12 builds on K-8	matter and radiation within that system. There is a single quantity called energy. A system's	created or destroyed—it
experiences and progresses to using,	total energy is conserved, even as, within the system, energy is continually transferred from	only moves between
synthesizing, and developing models	one object to another and between its various possible forms. (HS.PS3A.a)	one place and another
to predict and show relationships		place, between objects
among variables between systems	Energy is the ability to do work or cause change.	and/or fields, or
and their components in the natural and designed world(s).	Energy transforms from one form to another, but these transformations are not always reversible.	between systems.
• Develop, revise, and/or use a	A system's total energy is conserved regardless of the transfers within the system.	Energy cannot be
model based on evidence to	The total energy of a system changes only by the amount of energy transferred into and out	created or destroyed.
illustrate and/or predict the	of the system.	Energy can be
relationships between systems or		transferred from one
between components of a system.	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	object to another and
	light, and thermal energy. (HS.PS3A.b)	can be transformed
Develop or use a model to identify		from one form to
and describe the components of a	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	another, but the total
system.	These relationships are better understand at the microscopic code, at which all of the	amount of energy never
Develop or use a model to identify	These relationships are better understood at the microscopic scale, at which all of the	changes.
and describe the relationships	different manifestations of energy can be modeled as a combination of energy associated	
between the components of a	with the motion of particles and energy associated with the configuration (relative position of	
system.	the particles). In some cases the relative position energy can be thought of as stored in fields	
Develop or use a model to predict	(which mediate interactions between particles). This last concept includes radiation, a	
relationships between systems or	phenomenon in which energy stored in fields moves across space. (HS.PS3A.c)	
within a system.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Identify that models can help illustrate relationships between systems or within a system.	Energy can be modeled as either motions of particles or as stored in force fields (electric, magnetic, gravitational). At the microscopic scale, energy can be understood as a force that mediates interactions between particles. Electromagnetic radiation is a phenomenon in which energy stored in fields moves across space (light, radio waves) with no supporting matter medium.	

Clarification Statement		
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the relationship between a current-carrying wire and a magnetic compass.	
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.	

Performance Expectation and Louisiana Connectors

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy. LC-HS-PS3-3a Identify the forms of energy that will be converted by a device that converts one form of energy into another form of energy. LC-HS-PS3-3b Identify steps in a model of a device showing the transformations of energy that occur (e.g., solar cells, solar ovens, generators, turbines). LC-HS-PS3-3c Describe constraints to the design of the device which converts one form of energy into another form of energy (e.g., cost or efficiency of energy conversion).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing solutions: Constructing	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	Changes of energy and
explanations (science) and designing	light, and thermal energy. (HS.PS3A.b)	matter in a system can
solutions (engineering) in 9-12		be described in terms of
builds on K-8 experiences and	Energy takes many forms; forms of energy are motion, sound, light, and thermal energy.	energy and matter flows
progresses to explanations and		into, out of, and within
designs that are supported by	ENERGY IN CHEMICAL PROCESSES	that system.
multiple and independent student-	Although energy cannot be destroyed, it can be converted to other forms—for example, to	
generated sources of evidence	thermal energy in the surrounding environment. (HS.PS3D.a)	The processes of energy
consistent with scientific ideas,		transformation and
principles, and theories.	A system does not destroy energy when carrying out any process.	energy transfer can be
• Design, evaluate, and/or refine a	When carrying out a process, most often some or all of the energy has been transferred to	used to understand the
solution to a complex real-world	heat the surrounding environment.	changes that take place
problem, based on scientific	Energy can be transformed into other energy forms.	in physical systems.
knowledge, student-generated	To produce energy typically means to convert some stored energy into a desired form.	
sources of evidence, prioritized		
criteria, and tradeoff considerations.	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Criteria and constraints also include satisfying any requirements set by society, such as taking	
Design a solution to a complex real-	issues of risk mitigation into account, and they should be quantified to the extent possible	
world problem, based on scientific	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
knowledge, student-generated		
sources of evidence, prioritized	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
criteria, and tradeoff	the design of the device.	
considerations.		
Evaluate a solution to a complex		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex real- world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	The social, economic, and political forces of a society have a significant influence on what science and technology solutions are implemented.	

Clarification Statement		
Physical Science Emphasis is on qualitative evaluations of devices. Constraint of renewable energy forms and efficiency. Emphasis is on devices can be with teacher approved materials. Examples of devices can be chemistry or physics clarification statements below.		
Emphasis is on both qualitative and quantitative evaluations of devices constraints could include use of renewable energy forms and efficient of quantitative evaluations is limited to total output for a given input Emphasis is on devices constructed with teacher approved material of devices in chemistry could include hot/cold packs and batteries.		
Physics	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in physics could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and electric motors.	

Performance Expectation and Louisiana Connectors

HS-PS3-4 Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). LC-HS-PS3-4a Identify the temperatures of two liquids of different temperature before mixing and after combining to show uniform energy distribution. LC-HS-PS3-4b Investigate the transfer of thermal energy when two substances are combined within a closed system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CONSERVATION OF ENERGY AND ENERGY TRANSFER	SYSTEMS AND SYSTEM
investigations: Planning and	Energy cannot be created or destroyed, but it can be transported from one place to another,	MODELS
carrying out investigations to	transformed into other forms, and transferred between systems. (HS.PS3B.b)	When investigating or
answer questions (science) or test		describing a system, the
solutions to problems (engineering)	Energy cannot be created or destroyed.	boundaries and initial
in 9-12 builds on K-8 experiences	Energy can be transferred from one object to another and can be transformed from one	conditions of the system
and progresses to include	form to another.	need to be defined and
investigations that provide evidence	The processes of energy transformation and energy transfer can be used to understand the	their inputs and outputs
for and test conceptual,	changes that take place in physical systems.	analyzed and described
mathematical, physical, and		using models.
empirical models.	Uncontrolled systems always evolve toward more stable states—that is, toward more uniform	
 Plan and conduct an investigation 	energy distribution (e.g., water flows downhill, objects hotter than their surrounding	Making models helps
individually and collaboratively to	environment cool down). (HS.PS3B.e)	people understand
produce data to serve as the basis		things they cannot
for evidence, and in the design:	Energy can change from one kind to another.	observe directly.
decide on types, how much, and	When two substances (e.g., water or air) of different temperature are combined (within a	Scientists use models to
accuracy of data needed to produce	closed system), the result will be a more uniform temperature (energy) distribution in the	represent things that
reliable measurements and consider	system.	are either very large or
limitations on the precision of the		very small.
data (e.g., number of trials, cost,	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	Any model of a system
risk, time), and refine the design	Although energy cannot be destroyed, it can be converted to less useful other forms—for	incorporates
accordingly.	example, to thermal energy in the surrounding environment. (HS.PS3D.a)	assumptions and
		approximations (e.g.,
Plan an investigation individually	Energy can be transformed into other energy forms.	the boundaries and
and collaboratively to produce data		initial conditions of the
to serve as the basis for evidence,		system, inputs and

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements. Revise an investigation individually and collaboratively to produce data to serve as the basis for evidence. Conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence.	When "producing" or "using" energy, most often some or all of the energy has been transferred to heat the surrounding environment.	outputs). It is critical to be aware of a system's physical, chemical, biological, and social interactions and how they affect the model's reliability and precision.

Clarification Statement		
Physical Science, Chemistry, and Physics	Emphasis is on analyzing data from student investigations and using mathematical thinking appropriate to the subject to describe the energy changes quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at	
	different temperatures to water.	

Performance Expectation and Louisiana Connectors

HS-PS3-2 Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles/objects and energy associated with the relative positions of particles/objects.

LC-HS-PS3-2a Identify that two factors, an object's mass and height above the ground, affect gravitational potential energy (i.e., energy stored due to position of an object above Earth) at the macroscopic level.

LC-HS-PS3-2b Identify that the mass of an object and its speed determine the amount of kinetic energy the object possesses.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	DEFINITIONS OF ENERGY	ENERGY AND MATTER
Developing and using models:	Energy is a quantitative property of a system that depends on the motion and interactions of	Energy cannot be
Modeling in 9-12 builds on K-8	matter and radiation within that system. There is a single quantity called energy. A system's	created or destroyed—it
experiences and progresses to using,	total energy is conserved, even as, within the system, energy is continually transferred from	only moves between
synthesizing, and developing models	one object to another and between its various possible forms. (HS.PS3A.a)	one place and another
to predict and show relationships		place, between objects
among variables between systems	Energy is the ability to do work or cause change.	and/or fields, or
and their components in the natural	Energy transforms from one form to another, but these transformations are not always	between systems.
and designed world(s).	reversible.	
 Develop, revise, and/or use a 	A system's total energy is conserved regardless of the transfers within the system.	Energy cannot be
model based on evidence to	The total energy of a system changes only by the amount of energy transferred into and out	created or destroyed.
illustrate and/or predict the	of the system.	Energy can be
relationships between systems or		transferred from one
between components of a system.	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	object to another and
	light, and thermal energy. (HS.PS3A.b)	can be transformed
Develop or use a model to identify		from one form to
and describe the components of a	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	another, but the total
system.		amount of energy never
Develop or use a model to identify	These relationships are better understood at the microscopic scale, at which all of the	changes.
and describe the relationships	different manifestations of energy can be modeled as a combination of energy associated	
between the components of a	with the motion of particles and energy associated with the configuration (relative position of	
system.	the particles). In some cases the relative position energy can be thought of as stored in fields	
Develop or use a model to predict	(which mediate interactions between particles). This last concept includes radiation, a	
relationships between systems or	phenomenon in which energy stored in fields moves across space. (HS.PS3A.c)	
within a system.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Identify that models can help illustrate relationships between systems or within a system.	Energy can be modeled as either motions of particles or as stored in force fields (electric, magnetic, gravitational). At the microscopic scale, energy can be understood as a force that mediates interactions between particles. Electromagnetic radiation is a phenomenon in which energy stored in fields moves across space (light, radio waves) with no supporting matter medium.	

Clarification Statement	
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the relationship between a current-carrying wire and a magnetic compass.
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.

Performance Expectation and Louisiana Connectors

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy. LC-HS-PS3-3a Identify the forms of energy that will be converted by a device that converts one form of energy into another form of energy. LC-HS-PS3-3b Identify steps in a model of a device showing the transformations of energy that occur (e.g., solar cells, solar ovens, generators, turbines). LC-HS-PS3-3c Describe constraints to the design of the device which converts one form of energy into another form of energy (e.g., cost or efficiency of energy conversion).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing solutions: Constructing	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	Changes of energy and
explanations (science) and designing	light, and thermal energy. (HS.PS3A.b)	matter in a system can
solutions (engineering) in 9-12		be described in terms of
builds on K-8 experiences and	Energy takes many forms; forms of energy are motion, sound, light, and thermal energy.	energy and matter flows
progresses to explanations and		into, out of, and within
designs that are supported by	ENERGY IN CHEMICAL PROCESSES	that system.
multiple and independent student-	Although energy cannot be destroyed, it can be converted to other forms—for example, to	
generated sources of evidence	thermal energy in the surrounding environment. (HS.PS3D.a)	The processes of energy
consistent with scientific ideas,		transformation and
principles, and theories.	A system does not destroy energy when carrying out any process.	energy transfer can be
• Design, evaluate, and/or refine a	When carrying out a process, most often some or all of the energy has been transferred to	used to understand the
solution to a complex real-world	heat the surrounding environment.	changes that take place
problem, based on scientific	Energy can be transformed into other energy forms.	in physical systems.
knowledge, student-generated	To produce energy typically means to convert some stored energy into a desired form.	
sources of evidence, prioritized		
criteria, and tradeoff considerations.	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Criteria and constraints also include satisfying any requirements set by society, such as taking	
Design a solution to a complex real-	issues of risk mitigation into account, and they should be quantified to the extent possible	
world problem, based on scientific	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
knowledge, student-generated		
sources of evidence, prioritized	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
criteria, and tradeoff	the design of the device.	
considerations.		
Evaluate a solution to a complex		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
real-world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex real- world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	The social, economic, and political forces of a society have a significant influence on what science and technology solutions are implemented.	

Clarification Statement	
Physical Science	Emphasis is on qualitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Emphasis is on devices constructed with teacher approved materials. Examples of devices can be drawn from chemistry or physics clarification statements below.
Chemistry	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in chemistry could include hot/cold packs and batteries.
Physics	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in physics could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and electric motors.

Performance Expectation and Louisiana Connectors

HS-PS3-5 Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

LC-HS-PS3-5a Use a model to identify the cause and effect relationships between forces produced by electric or magnetic fields and the change of energy of the objects in the system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	RELATIONSHIP BETWEEN ENERGY AND FORCES	CAUSE AND EFFECT
Modeling in 9-12 builds on K-8	When two objects interacting through a field change relative position, the energy stored in	Cause and effect
experiences and progresses to using	the field is changed. (HS.PS3C.a)	relationships can be
synthesizing and developing models		suggested and predicted
to predict and show relationships	When two objects interact, each one exerts a force on the other.	for complex natural and
among variables between systems	These forces can transfer energy between the objects.	human-designed
and their components in the natural	Forces between two objects at a distance are explained by force fields (gravitational,	systems by examining
and designed world(s).	electric, or magnetic) between them.	what is known about
 Develop, revise, and/or use a 	The energy stored in the field is consistent with the change in energy of the objects.	smaller scale
model based on evidence to		mechanisms within the
illustrate and/or predict the		system.
relationships between systems or		
between components of a system.		An understanding of
		small scale mechanisms
Develop or use a model to identify		within a system can
and describe the components of a		uncover cause and
system.		effect relationships for
Develop or use a model to identify		complex systems
and describe the relationships		(natural and human-
between the components of a		designed).
system.		An understanding of
Develop or use a model to predict		small scale mechanisms
relationships between systems or		within a system can be
within a system.		predictive of cause and
Identify that models can help		effect relationships for

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		complex systems
systems or within a system.		(natural and human-
		designed).

Clarification Statement	
	Examples of models could include drawings, diagrams, simulations and texts,
Physical Science	such as what happens when two charged objects or two magnetic poles are
	near each other.
	Examples of models could include drawings, diagrams, and texts, such as
Physics	drawings of what happens when two charges of opposite polarity are near
	each other.

Performance Expectation and Louisiana Connectors

HS-PS4-1 Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

LC-HS-PS4-1a Qualitatively describe cause and effect relationships between changes in wave speed and type of media through which the wave travels using mathematical and graphical representations.

LC-HS-PS4-1b Identify examples that illustrate the relationship between the frequency and wavelength of a wave.

LC-HS-PS4-1c Identify evidence that the speed of a wave depends on the media through which it travels.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WAVE PROPERTIES	CAUSE AND EFFECT
computational thinking:	The wavelength and frequency of a wave are related to one another by the speed of travel of	Empirical evidence is
Mathematical and computational	the wave, which depends on the type of wave and the medium through which it is passing.	required to differentiate
thinking in 9-12 builds on K-8	(HS.PS4A.a)	between cause and
experiences and progresses to using		correlation and make
algebraic thinking and analysis, a	The speed of a wave in a particular medium is constant. For this wave, the frequency and	claims about specific
range of linear and nonlinear	the wavelength are related to one another.	causes and effects.
functions (e.g., trigonometric,	The speed of a wave can also be affected by the type of material through which it travels.	
exponential and logarithmic) and		Evidence is required
computational tools for statistical		when attributing an
analysis to analyze, represent, and		observed phenomenon
model data. Simple computational		to a specific cause.
simulations are created and used		Evidence is required to
based on mathematical models of		explain the causal
basic assumptions.		mechanisms in a system
• Use mathematical, computational,		under study.
and/or algorithmic representations		Evidence is required to
of phenomena or design solutions to		support a claim about
describe and/or support claims		the causal mechanisms
and/or explanations.		in a system under
		study.
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe claims.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement	
	Emphasis is on describing waves both qualitatively and quantitatively.
Physical Science	Qualitative focus includes standard repeating waves and
	transmission/absorption of electromagnetic waves/radiation.

Clarification Statement	
	Examples of data could include electromagnetic radiation traveling through a
Physics	vacuum and glass, sound waves traveling through air and water, and seismic
	waves traveling through the Earth. Emphasis is on algebraic relationships and
	describing those relationships qualitatively.

Performance Expectation and Louisiana Connectors

PS4-4 Evaluate the validity and reliability of claims in published materials regarding the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

LC-PS4-4a Recognize the relationship between the damage to living tissue from electromagnetic radiation and the energy of the radiation.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Obtaining, evaluating, and	ELECTROMAGNETIC RADIATION	CAUSE AND EFFECT
communicating information:	When light or longer wavelength electromagnetic radiation is absorbed in matter, it is	Cause and effect
Obtaining, evaluating, and	generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation	relationships can be
communicating information in 9-12	(ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells.	suggested and predicted
builds on K-8 experiences and	(HS.PS4B.b)	for complex natural and
progresses to evaluating the validity		human-designed
and reliability of the claims,	Energy from the sun takes the form of electromagnetic waves such as infrared, visible, and	systems by examining
methods, and designs.	ultraviolet electromagnetic waves.	what is known about
 Evaluate the validity and reliability 	Electromagnetic waves carry a single form of energy called electromagnetic (radiant)	smaller scale
of and/or synthesize multiple claims,	energy.	mechanisms within the
methods, and/or designs that	The radiation from the sun consists of a range of energies in the electromagnetic spectrum.	system.
appear in scientific and technical	Electromagnetic radiation when absorbed can be converted to thermal energy.	
texts or media reports, verifying the	Electromagnetic waves carry energy that can have important consequences when	An understanding of
data when possible.	transferred to objects or substances.	small scale mechanisms
	Some electromagnetic radiation can cause damage to living cells.	within a system can
Evaluate the validity and reliability		uncover cause and
of claims that appear in scientific		effect relationships for
and technical texts, verifying the		complex systems
data when possible.		(natural and human-
Evaluate the validity and reliability		designed).
of claims that appear in media		An understanding of
reports, verifying the data when		small scale mechanisms
possible.		within a system can be
Evaluate the validity and reliability		predictive of cause and
of methods that appear in scientific		effect relationships for
and technical texts, verifying the		complex systems

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
data when possible.		(natural and human-
Evaluate the validity and reliability		designed).
of methods that appear in media		
reports, verifying the data when		
possible.		
Evaluate the validity and reliability		
of designs that appear in scientific		
and technical texts, verifying the		
data when possible.		
Evaluate the validity and reliability		
of designs that appear in media		
reports, verifying the data when		
possible.		

Clarification Statement

Emphasis is on the idea that photons associated with different frequencies of light have different energies, and the damage to living tissue from electromagnetic radiation depends on the energy of the radiation. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias. Emphasis is on qualitative descriptions.

