

HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

LC-HS-PS2-2a Identify an example of the law of conservation of momentum (e.g., in a collision, the momentum change of an object is equal to and opposite of the momentum change of the other object) represented using graphical or visual displays (e.g., pictures, pictographs, drawings, written observations, tables, charts).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	FORCES AND MOTION	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Newton's second law accurately predicts changes in the motion of macroscopic objects.	Empirical evidence is
experiences and progresses to	(HS.PS2.A.a)	required to differentiate
introducing more detailed statistical		between cause and
analysis, the comparison of data	Unbalanced forces applied to an object will cause acceleration.	correlation and make
sets for consistency, and the use of	The size of this acceleration is determined by the mass of the object and the size of force	claims about specific
models to generate and analyze	applied.	causes and effects.
data.	Forces might change the motion of objects (e.g., During tug-of-war, if forces on opposite	
 Analyze data using tools, 	teams are equal, the rope will not move.).	Evidence is required
technologies, and/or models (e.g.,	Forces change the motion of objects. Newton's Laws can be used to predict these changes.	when attributing an
computational, mathematical) in	Newton's second law describes the effects of the size of the total force and the object's mass	observed phenomenon
order to make valid and reliable	on its resulting acceleration.	to a specific cause.
scientific claims or determine an	The reason why objects may react differently to equal sized forces is explained by Newton's	Evidence is required to
optimal design solution.	second law.	explain the causal
		mechanisms in a system
Analyze data using tools in order to		under study.
make valid and reliable scientific		Evidence is required to
claims.		support a claim about
Analyze data using tools in order to		the causal mechanisms
determine an optimal design		in a system under
solution.		study.
Analyze data using technology in		
order to make valid and reliable		
scientific claims.		

Disciplinary Core Idea	Crosscutting Concept
	Disciplinary Core Idea

Clarification Statement		
	Examples of data could include tables or graphs of position or velocity as a	
	function of time for objects subject to a net unbalanced force, such as a falling	
Physical Science	object, an object rolling down a ramp, or a moving object being pulled by a	
	constant force. Emphasis is on one-dimensional motion and macroscopic	
	objects moving at nonrelativistic speeds.	
	Examples of data could include tables or graphs of position or velocity as a	
	function of time for objects subject to a net unbalanced force, such as a falling	
Chamisture	object, an object rolling down a ramp, or a moving object being pulled by a	
Chemistry	constant force. Emphasis is on kinematics, one-dimensional motion, two-	
	dimensional motion, and macroscopic objects moving at non-relativistic	
	speeds.	

HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

LC-HS-PS2-2a Identify an example of the law of conservation of momentum (e.g., in a collision, the momentum change of an object is equal to and opposite of the momentum change of the other object) represented using graphical or visual displays (e.g., pictures, pictographs, drawings, written observations, tables, charts).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	FORCES AND MOTION	SYSTEMS AND SYSTEM
computational thinking:	Momentum is defined for a particular frame of reference; it is the mass times the velocity of	MODELS
Mathematical and computational	the object. In any system, total momentum is always conserved. (HS.PS2A.b)	When investigating or
thinking in 9-12 builds on K-8		describing a system, the
experiences and progresses to using	Momentum is the product of an object's mass and its velocity.	boundaries and initial
algebraic thinking and analysis, a	Momentum is determined by the speed of an object and the direction it is traveling	conditions of the system
range of linear and nonlinear	(velocity) of an object and the object's mass.	need to be defined and
functions, including, computational	The momentum of an object is in the same direction as its velocity.	their inputs and outputs
tools for statistical analysis to	The more momentum an object has, the harder it is to stop.	analyzed and described
analyze, represent, and model data.	The Law of Conservation of Momentum can be used to predict the outcomes of collisions	using models.
Simple computational simulations	between objects and can aid in understanding the energy transfers and energy	
are created and used based on	transformations in these collisions.	Making models helps
mathematical models of basic		people understand
assumptions.	If a system interacts with objects outside itself, the total momentum of the system can	things they cannot
• Use mathematical, computational,	change; however, any such change is balanced by changes in the momentum of objects	observe directly.
and/or algorithmic	outside the system. (HS.PS2A.c)	Scientists use models to
representations of phenomena or		represent things that
design solutions to	Momentum is conserved as long as there are no new objects added to the system.	are either very large or
describe and/or support claims	The total momentum of any group of objects remains the same unless outside forces act on	very small.
and/or explanations.	the object.	Any model of a system
	Only unbalanced forces can change the momentum of an object.	incorporates
Use mathematical or algorithmic	An impulse represents how much the momentum of an object changes when a force acts on	assumptions and
forms for scientific modeling of	it over a period of time.	approximations (e.g.,
phenomena to describe claims.		the boundaries and
Use mathematical or algorithmic		initial conditions of the

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
forms for scientific modeling of	The impulse describes the relationship between the force acting on an object and the	system, inputs and
design solutions to describe claims.	change it produces in the object's momentum.	outputs).
Use mathematical or algorithmic		It is critical to be aware
forms for scientific modeling of		of a system's physical,
phenomena to support claims.		chemical, biological,
Use mathematical or algorithmic		and social interactions
forms for scientific modeling of		and how they affect the
design solutions to support claims.		model's reliability and
Use mathematical or algorithmic		precision.
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement		
Physical Science	Emphasis is on calculating momentum and the qualitative meaning of	
Physical Science	conservation of momentum.	
	Emphasis is on the quantitative conservation of momentum in interactions and	
Chemistry	the qualitative meaning of this principle as well as systems of two macroscopic	
	bodies moving in one dimension.	

HS-PS2-3 Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. LC-HS-PS2-3a Evaluate a device (e.g., football helmet or a parachute) designed to minimize force by comparing data (i.e., momentum, mass, velocity, force, or time).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	FORCES AND MOTION	CAUSE AND EFFECT
designing solution: Constructing	If a system interacts with objects outside itself, the total momentum of the system can	Systems can be
explanations (science) and designing	change; however, any such change is balanced by changes in the momentum of objects	designed to cause a
solutions (engineering) in 9-12	outside the system. (HS.PS2A.c)	desired effect.
builds on K-8 experiences and	Momentum is conserved as long as there are no new objects added to the system.	
progresses to explanations and	The total momentum of any group of objects remains the same unless outside forces act on	It is important to
designs that are supported by	the object.	describe the design of a
multiple and independent student-	Only unbalanced forces can change the momentum of an object.	solution and the
generated sources of evidence	An impulse represents how much the momentum of an object changes when a force acts on	features that make it
consistent with scientific ideas,	it over a periods of time.	successful.
principles, and theories.	The impulse describes the relationship between the force acting on an object and the	An intentional change
 Design, evaluate, and/or refine a 	change it produces in the object's momentum.	to a system can cause a
solution to a complex real-world		desired effect.
problem, based on scientific	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
knowledge, student-generated	Criteria and constraints also include satisfying any requirements set by society, such as taking	
sources of evidence, prioritized	issues of risk mitigation into account, and they should be quantified to the extent possible	
criteria, and tradeoff considerations.	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
Design a solution to a complex real-	the design of the device.	
world problem, based on scientific	The social, economic, and political forces of a society have a significant influence on what	
knowledge, student-generated	science and technology solutions are implemented.	
sources of evidence, prioritized		
criteria, and tradeoff	OPTIMIZING THE DESIGN SOLUTION	
considerations.	Criteria may need to be broken down into simpler ones that can be approached	
Evaluate a solution to a complex	systematically, and decisions about the priority of certain criteria over others (tradeoffs) may	
real-world problem, based on	be needed. (HS.ETS1C.a)	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex real- world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	It is important to prioritize the benefits and costs of the design of a solution to a problem. The decision as to which criteria are critical and which ones can be traded off is a judgment based on the situation and the needs of the system.	

Clarification Statement		
Physical Science	Examples of evaluation and refinement could include determining the success of a device at protecting an object from damage such as, but not limited to, impact resistant packaging and modifying the design to improve it. Emphasis is on qualitative evaluations.	
Chemistry	Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it by applying the impulse-momentum theorem. Examples of a device could include a football helmet or an airbag. Emphasis is on qualitative evaluations and/or algebraic manipulations.	

HS-PS2-4 Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.

LC-HS-PS2-4a Use Newton's law of universal gravitation as a mathematical model to qualitatively describe or predict the effects of gravitational forces in systems with two objects.

LC-HS-PS2-4b Use Coulomb's law to qualitatively describe or predict the electrostatic forces in systems with two objects.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	TYPES OF INTERACTIONS	PATTERNS
computational thinking:	Newton's Law of Universal Gravitation and Coulomb's Law provide the mathematical models	Different patterns may
Mathematical and computational	to describe and predict the effects of gravitational and electrostatic forces between objects	be observed at each of
thinking in 9-12 builds on K-8	not in physical contact. (HS.PS2B.a)	the scales at which a
experiences and progresses to using	Gravitational, electric, and magnetic forces between a pair of objects do not require that	system is studied and
algebraic thinking and analysis, a	they be in contact.	can provide evidence for
range of linear and nonlinear	These forces are explained by force fields that contain energy and can transfer energy	causality in explanations
functions (e.g., trigonometric,	through space.	of phenomena.
exponential and logarithmic) and	Gravitational force is a universal force of attraction that acts between masses, but this force	
computational tools for statistical	is only significant when one (or both) of the objects is massive (for example, a star, planet or	Patterns can be used to
analysis to analyze, represent, and	moon).	explain phenomena.
model data. Simple computational	Newton's Law of Universal Gravitation provides the mathematical model to describe and	Different patterns can
simulations are created and used	predict the effects of gravitational forces between distant objects.	be observed at different
based on mathematical models of	Electric forces and magnetic forces are different aspects of a single electromagnetic	scales (micro and
basic assumptions.	interaction.	macro) in a system.
 Use mathematical, computational, 	Coulomb's law provides the mathematical model to describe and predict the effects of	Classifications used at
and/or algorithmic representations	electrostatic forces (relating to stationary electric charges or fields) between distant objects	one scale may fail or
of phenomena or design solutions to	Attractive or repulsive forces between objects are relative to their charges and the distance	need revision when
describe and/or support claims	between them (Coulombs Law).	information from
and/or explanations.		smaller or larger scales
	Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating	is introduced.
Use mathematical or algorithmic	space that can transfer energy through space. Magnets or electric currents cause magnetic	
forms for scientific modeling of	fields; electric charges or changing magnetic fields cause electric fields. (HS.PS2B.b)	
phenomena to describe claims.	Moving electric charges produce magnetic fields; changing magnetic fields induce electric	
Use mathematical or algorithmic	currents.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
forms for scientific modeling of	An electric field is the field around a charged particle that exerts a force on other charged	
design solutions to describe claims.	particles.	
Use mathematical or algorithmic	A magnetic field is a region around a magnet in which a magnetic force acts. (It is not	
forms for scientific modeling of	always an attraction, sometimes it is a repulsion.)	
phenomena to support claims.	Moving electric charges produce magnetic fields.	
Use mathematical or algorithmic	Electrical energy carried by currents in wires can be used to create magnetic fields.	
forms for scientific modeling of	Magnets and rotating coils can be used to create electric currents.	
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement

Emphasis is on both quantitative and conceptual descriptions of gravitational and electric fields.

HS-PS2-5 Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

LC-HS-PS2-5a Identify situations and provide evidence where an electric current is producing a magnetic field. LC-HS-PS2-5b Identify situations and provide evidence where a magnetic field is producing an electric current.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	TYPES OF INTERACTIONS	CAUSE AND EFFECT
Investigations: Planning and	Forces that act over a distance are explained by fields (gravitational, electric, and magnetic)	Empirical evidence is
carrying out investigations to	permeating space that can transfer energy through space. Magnets or electric currents cause	required to differentiate
answer questions or test solutions	magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS.PS2B.b)	between cause and
to problems in 9-12 builds on K-8		correlation and make
experiences and progresses to	Moving electric charges produce magnetic fields; changing magnetic fields induce electric	claims about specific
include investigations that provide	currents.	causes and effects.
evidence for and test conceptual,	An electric field is the field around a charged particle that exerts a force on other charged	
mathematical, physical, and	particles.	Evidence is required
empirical models.	A magnetic field is a region around a magnet in which magnetic attraction acts.	when attributing an
 Plan and conduct an investigation 	Gravity is the force which pulls objects together.	observed phenomenon
individually and collaboratively to	Moving electric charges produce magnetic fields.	to a specific cause.
produce data to serve as the basis	Electrical energy carried by currents in wires can be used to create magnetic fields.	Evidence is required to
for evidence, and in the design:	Magnets and rotating coils can be used to create electric currents.	explain the causal
decide on types, how much, and		mechanisms in a system
accuracy of data needed to produce	DEFINITIONS OF ENERGY	under study.
reliable measurements and consider	"Electrical energy" may mean energy stored in a battery or energy transmitted by electric	Evidence is required to
limitations on the precision of the	currents. (HS.PS3A.d)	support a claim about
data (e.g., number of trials, cost,		the causal mechanisms
risk, time), and refine the design	Electrical energy is a form of energy that can be transferred by moving charges through a	in a system under
accordingly.	complete circuit.	study.
	A battery is a combination of two or more electrochemical cells in a series.	
Plan an investigation individually	Batteries are portable sources of electrical energy.	
and collaboratively to produce data		
to serve as the basis for evidence,		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and in the design: decide on types,		
how much, and accuracy of data		
needed to produce reliable		
measurements.		
Revise an investigation individually		
and collaboratively to produce data		
to serve as the basis for evidence.		
Conduct an investigation		
individually and collaboratively to		
produce data to serve as the basis		
for evidence.		

Clarification Statement		
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the relationship between a current-carrying wire and a magnetic compass.	
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.	

HS-PS3-1 Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

LC-HS-PS3-1a Identify a model showing the change in the energy of one component in a system compared to the change in energy of another component in the system.

LC-HS-PS3-1b Identify a model showing the change in energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	DEFINITIONS OF ENERGY	SYSTEMS AND SYSTEM
computational thinking:	Energy is a quantitative property of a system that depends on the motion and interactions of	MODELS
Mathematical and computational	matter and radiation within that system. That there is a single quantity called energy is due to	Models can be used to
thinking in 9-12 builds on K-8	the fact that a system's total energy is conserved, even as, within the system, energy is	predict the behavior of a
experiences and progresses to using	continually transferred from one object to another and between its various possible forms.	system, but these
algebraic thinking and analysis, a	(HS.PS3A.a)	predictions have limited
range of linear and nonlinear		precision and reliability
functions including, computational	Energy is the ability to do work or cause change.	due to the assumptions
tools for statistical analysis to	Energy transforms from one form to another, but these transformations are not always	and approximations
analyze, represent, and model data.	reversible.	inherent in models.
Simple computational simulations	A system's total energy is conserved regardless of the transfers within the system.	
are created and used based on	The total energy of a system changes only by the amount of energy transferred into and out	Models can be valuable
mathematical models of basic	of the system.	in predicting a system's
assumptions.		behaviors.
Create and/or revise a	CONSERVATION OF ENERGY AND ENERGY TRANSFER	Any model of a system
computational model or simulation	Conservation of energy means that the total change of energy in any system is always equal	incorporates
of a phenomenon, designed device,	to the total energy transferred into or out of the system. (HS.PS3B.a)	assumptions and
process, or system.		approximations.
	The law of conservation of energy states that when one form of energy is converted to	As a result, model-
Create a computational model of a	another, no energy is destroyed in the process.	based predictions have
phenomenon.	According to the law of conservation of energy, energy cannot be created or destroyed.	limited precision and
Revise a computational model of a	The total change of energy in any system is always equal to the total energy transferred	reliability.
phenomenon.	into or out of the system.	
Create a simulation of a		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
phenomenon.	Energy cannot be created or destroyed, but it can be transported from one place to another	
Revise a simulation of a	and transferred between systems. (HS.PS3B.b)	
phenomenon.		
Create a computational model of a	Energy cannot be created or destroyed.	
designed device.	Energy can be transferred from one object to another and can be transformed from one	
Revise a computational model of a	form to another.	
designed device.	The processes of energy transformation and energy transfer can be used to understand the	
Create a simulation of a designed	changes that take place in physical systems.	
device.		
Revise a simulation of a designed	Mathematical expressions allow the concept of conservation of energy to be used to predict	
device.	and describe system behavior. These expressions quantify how the stored energy in a system	
Create a computational model of a	depends on its configuration (e.g., relative positions of charged particles, compression of a	
process.	spring) and how kinetic energy depends on mass and velocity. (HS.PS3B.c)	
Revise a computational model of a		
process.	The amount of energy available in a system is mathematically calculable.	
Create a simulation of a process.	Mathematical expressions quantify forms of energy in a system.	
Revise a simulation of a process.	These forms can be grouped into types of energy that are associated with the motion of	
Create a computational model of a	mass (kinetic energy), and types of energy associated with the position of mass and energy	
system.	fields (potential energy).	
Revise a computational model of a		
system.	The availability of energy limits what can occur in any system. (HS.PC3B.d)	
Create a simulation of a system.		
Revise a simulation of a system.	The amount of energy available in a system determines what the system is capable of	
	doing.	

Clarification Statement	
	Emphasis is on explaining the meaning of mathematical expressions used in
Physical Science	the model. Focus is on basic algebraic expression or computations, systems of
	two or three components, and thermal energy.
Ch amiliature	Emphasis is on explaining the meaning of mathematical expressions used in
Chemistry	the model. Focus is on basic algebraic expression or computations; systems of

Clarification Statement	
two or three components; and thermal energy, kinetic energy, and/or the	
energies in gravitational, magnetic, or electric fields.	

HS-PS3-2 Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).

LC-HS-PS3-2a Identify that two factors, an object's mass and height above the ground, affect gravitational potential energy (i.e., energy stored due to position of an object above Earth) at the macroscopic level.

LC-HS-PS3-2b Identify that the mass of an object and its speed determine the amount of kinetic energy the object possesses.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	DEFINITIONS OF ENERGY	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Energy is a quantitative property of a system that depends on the motion and interactions of	Energy cannot be
experiences and progresses to using,	matter and radiation within that system. There is a single quantity called energy. A system's	created or destroyed—it
synthesizing, and developing models	total energy is conserved, even as, within the system, energy is continually transferred from	only moves between
to predict and show relationships	one object to another and between its various possible forms. (HS.PS3A.a)	one place and another
among variables between systems		place, between objects
and their components in the natural	Energy is the ability to do work or cause change.	and/or fields, or
and designed world(s).	Energy transforms from one form to another, but these transformations are not always	between systems.
 Develop, revise, and/or use a 	reversible.	
model based on evidence to	A system's total energy is conserved regardless of the transfers within the system.	Energy cannot be
illustrate and/or predict the	The total energy of a system changes only by the amount of energy transferred into and out	created or destroyed.
relationships between systems or	of the system.	Energy can be
between components of a system.		transferred from one
	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	object to another and
Develop or use a model to identify	light, and thermal energy. (HS.PS3A.b)	can be transformed
and describe the components of a		from one form to
system.	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	another, but the total
Develop or use a model to identify		amount of energy never
and describe the relationships	These relationships are better understood at the microscopic scale, at which all of the	changes.
between the components of a	different manifestations of energy can be modeled as a combination of energy associated	
system.	with the motion of particles and energy associated with the configuration (relative position of	
Develop or use a model to predict	the particles). In some cases the relative position energy can be thought of as stored in fields	
relationships between systems or	(which mediate interactions between particles). This last concept includes radiation, a	
within a system.	phenomenon in which energy stored in fields moves across space. (HS.PS3A.c)	
Identify that models can help		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between systems or within a system.	Energy can be modeled as either motions of particles or as stored in force fields (electric, magnetic, gravitational). At the microscopic scale, energy can be understood as a force that mediates interactions between particles. Electromagnetic radiation is a phenomenon in which energy stored in fields moves across space (light, radio waves) with no supporting matter medium.	

Clarification Statement		
Physical Science	Emphasis is on designing and conducting investigations including evaluating simple series and parallel circuits. Qualitative evidence is used to explain the relationship between a current-carrying wire and a magnetic compass.	
Chemistry	Evidence of changes within a circuit can be represented numerically, graphically, or algebraically using Ohm's law. Emphasis is on designing and conducting investigations using qualitative evidence to determine the relationship between electric current and magnetic fields. Examples of evidence can include movement of a magnetic compass needle when placed in the vicinity of a current-carrying wire, and a magnet passing through a coil that turns on the light of a Faraday flashlight.	

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

LC-HS-PS3-3a Identify the forms of energy that will be converted by a device that converts one form of energy into another form of energy.

LC-HS-PS3-3b Identify steps in a model of a device showing the transformations of energy that occur (e.g., solar cells, solar ovens, generators, turbines).

LC-HS-PS3-3c Describe constraints to the design of the device which converts one form of energy into another form of energy (e.g., cost or efficiency of energy conversion).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	DEFINITIONS OF ENERGY	ENERGY AND MATTER
designing solutions: Constructing	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound,	Changes of energy and
explanations (science) and designing	light, and thermal energy. (HS.PS3A.b)	matter in a system can
solutions (engineering) in 9-12		be described in terms of
builds on K-8 experiences and	Energy takes many forms; forms may include motion, sound, light, and thermal energy.	energy and matter flows
progresses to explanations and		into, out of, and within
designs that are supported by	ENERGY IN CHEMICAL PROCESSES	that system.
multiple and independent student-	Although energy cannot be destroyed, it can be converted to other forms—for example, to	
generated sources of evidence	thermal energy in the surrounding environment. (HS.PS3D.a)	The processes of energy
consistent with scientific ideas,		transformation and
principles, and theories.	A system does not destroy energy when carrying out any process.	energy transfer can be
 Design, evaluate, and/or refine a 	When carrying out a process, most often some or all of the energy has been transferred to	used to understand the
solution to a complex real-world	heat the surrounding environment.	changes that take place
problem, based on scientific	Energy can be transformed into other energy forms.	in physical systems.
knowledge, student-generated	To produce energy typically means to convert some stored energy into a desired form.	
sources of evidence, prioritized		
criteria, and tradeoff considerations.	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Criteria and constraints also include satisfying any requirements set by society, such as taking	
Design a solution to a complex real-	issues of risk mitigation into account, and they should be quantified to the extent possible	
world problem, based on scientific	and stated in such a way that one can tell if a given design meets them. (HS.ETS1A.a)	
knowledge, student-generated		
sources of evidence, prioritized	A first step in designing a device to solve a problem is prioritizing criteria and constraints for	
criteria, and tradeoff	the design of the device.	
considerations.		
Evaluate a solution to a complex		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	The social, economic, and political forces of a society have a significant influence on what science and technology solutions are implemented.	

Clarification Statement	
Physical Science	Emphasis is on qualitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Emphasis is on devices constructed with teacher approved materials. Examples of devices can be drawn from chemistry or physics clarification statements below.
Chemistry	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in chemistry could include hot/cold packs and batteries.
Physics	Emphasis is on both qualitative and quantitative evaluations of devices. Constraints could include use of renewable energy forms and efficiency. Focus of quantitative evaluations is limited to total output for a given input. Emphasis is on devices constructed with teacher approved materials. Examples of devices in physics could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and electric motors.

HS-PS3-4 Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). LC-HS-PS3-4a Identify the temperatures of two liquids of different temperature before mixing and after combining to show uniform energy distribution. LC-HS-PS3-4b Investigate the transfer of thermal energy when two substances are combined within a closed system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	CONSERVATION OF ENERGY AND ENERGY TRANSFER	SYSTEMS AND SYSTEM
investigations: Planning and	Energy cannot be created or destroyed, but it can be transported from one place to another,	MODELS
carrying out investigations to	transformed into other forms, and transferred between systems. (HS.PS3B.b)	When investigating or
answer questions (science) or test		describing a system, the
solutions to problems (engineering)	Energy cannot be created or destroyed.	boundaries and initial
in 9-12 builds on K-8 experiences	Energy can be transferred from one object to another and can be transformed from one	conditions of the system
and progresses to include	form to another.	need to be defined and
investigations that provide evidence	The processes of energy transformation and energy transfer can be used to understand the	their inputs and outputs
for and test conceptual,	changes that take place in physical systems.	analyzed and described
mathematical, physical, and		using models.
empirical models.	Uncontrolled systems always evolve toward more stable states—that is, toward more uniform	
Plan and conduct an investigation	energy distribution (e.g., water flows downhill, objects hotter than their surrounding	Making models helps
individually and collaboratively to	environment cool down). (HS.PS3B.e)	people understand
produce data to serve as the basis		things they cannot
for evidence, and in the design:	Energy can change from one kind to another.	observe directly.
decide on types, how much, and	When two substances (e.g., water or air) of different temperature are combined (within a	Scientists use models to
accuracy of data needed to produce	closed system), the result will be a more uniform temperature (energy) distribution in the	represent things that
reliable measurements and consider	system.	are either very large or
limitations on the precision of the		very small.
data (e.g., number of trials, cost,	ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE	Any model of a system
risk, time), and refine the design	Although energy cannot be destroyed, it can be converted to less useful other forms—for	incorporates
accordingly.	example, to thermal energy in the surrounding environment. (HS.PS3D.a)	assumptions and
		approximations (e.g.,
Plan an investigation individually	Energy can be transformed into other energy forms.	the boundaries and
and collaboratively to produce data		initial conditions of the
to serve as the basis for evidence,		system, inputs and

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements. Revise an investigation individually and collaboratively to produce data to serve as the basis for evidence. Conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence.	When "producing" or "using" energy, most often some or all of the energy has been transferred to heat the surrounding environment.	outputs). It is critical to be aware of a system's physical, chemical, biological, and social interactions and how they affect the model's reliability and precision.

Clarification Statement	
	Emphasis is on analyzing data from student investigations and using mathematical thinking appropriate to the subject to describe the energy
Physical Science, Chemistry, and Physics	changes quantitatively and conceptually. Examples of investigations could
	include mixing liquids at different initial temperatures or adding objects at
	different temperatures to water.

HS-PS3-5 Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

LC-HS-PS3-5a Use a model to identify the cause and effect relationships between forces produced by electric or magnetic fields and the change of energy of the objects in the system.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	RELATIONSHIP BETWEEN ENERGY AND FORCES	CAUSE AND EFFECT
Modeling in 9-12 builds on K-8	When two objects interacting through a field change relative position, the energy stored in	Cause and effect
experiences and progresses to using	the field is changed. (HS.PS3C.a)	relationships can be
synthesizing and developing models		suggested and predicted
to predict and show relationships	When two objects interact, each one exerts a force on the other.	for complex natural and
among variables between systems	These forces can transfer energy between the objects.	human-designed
and their components in the natural	Forces between two objects at a distance are explained by force fields (gravitational,	systems by examining
and designed world(s).	electric, or magnetic) between them.	what is known about
 Develop, revise, and/or use a 	The energy stored in the field is consistent with the change in energy of the objects.	smaller scale
model based on evidence to		mechanisms within the
illustrate and/or predict the		system.
relationships between systems or		
between components of a system.		An understanding of
		small scale mechanisms
Develop or use a model to identify		within a system can
and describe the components of a		uncover cause and
system.		effect relationships for
Develop or use a model to identify		complex systems
and describe the relationships		(natural and human-
between the components of a		designed).
system.		An understanding of
Develop or use a model to predict		small scale mechanisms
relationships between systems or		within a system can be
within a system.		predictive of cause and
Identify that models can help		effect relationships for
		complex systems

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		(natural and human-
systems or within a system.		designed).

Clarification Statement	
Physical Science Examples of models could include drawings, diagrams, simulations and test such as what happens when two charged objects or two magnetic poles a near each other.	
Physics	Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.

HS-PS4-1 Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

LC-HS-PS4-1a Qualitatively describe cause and effect relationships between changes in wave speed and type of media through which the wave travels using mathematical and graphical representations.

LC-HS-PS4-1b Identify examples that illustrate the relationship between the frequency and wavelength of a wave.

LC-HS-PS4-1c Identify evidence that the speed of a wave depends on the media through which it travels.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WAVE PROPERTIES	CAUSE AND EFFECT
computational thinking:	The wavelength and frequency of a wave are related to one another by the speed of travel of	Empirical evidence is
Mathematical and computational	the wave, which depends on the type of wave and the medium through which it is passing.	required to differentiate
thinking in 9-12 builds on K-8	(HS.PS4A.a)	between cause and
experiences and progresses to using		correlation and make
algebraic thinking and analysis, a	The speed of a wave in a particular medium is constant. For this wave, the frequency and	claims about specific
range of linear and nonlinear	the wavelength are related to one another.	causes and effects.
functions (e.g., trigonometric,	The speed of a wave can also be affected by the type of material through which it travels.	
exponential and logarithmic) and		Evidence is required
computational tools for statistical		when attributing an
analysis to analyze, represent, and		observed phenomenon
model data. Simple computational		to a specific cause.
simulations are created and used		Evidence is required to
based on mathematical models of		explain the causal
basic assumptions.		mechanisms in a system
• Use mathematical, computational,		under study.
and/or algorithmic representations		Evidence is required to
of phenomena or design solutions to		support a claim about
describe and/or support claims		the causal mechanisms
and/or explanations.		in a system under
		study.
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe claims.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support		
explanations.		

Clarification Statement		
Emphasis is on describing waves both qualitatively and quant		
Physical Science	Qualitative focus includes standard repeating waves and	
	transmission/absorption of electromagnetic waves/radiation.	
Dhousing	Examples of data could include electromagnetic radiation traveling through a	
Physics	vacuum and glass, sound waves traveling through air and water, and seismic	

Clarification Statement	
waves traveling through the Earth. Emphasis is on algebraic relationsh	
describing those relationships qualitatively.	

HS-PS4-3 Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.

LC-HS-PS4-3a Identify a model or description of electromagnetic radiation as a wave model.

LC-HS-PS4-3b Identify a model or description of electromagnetic radiation as a particle model.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	WAVE PROPERTIES	SYSTEMS AND SYSTEM
evidence: Engaging in argument	Waves can add or cancel one another as they cross, depending on their relative phase (i.e.,	MODELS
from evidence in 9-12 builds on K-8	relative position of peaks and troughs of the waves), but they emerge unaffected by each	Models (e.g., physical,
experiences and progresses to using	other. (HS.PS4A.b)	mathematical,
appropriate and sufficient evidence		computer models) can
and scientific reasoning to defend	Interference is when two waves interact.	be used to simulate
and critique claims and explanations	Standing waves are formed by the interference of two waves moving in the opposite	systems and
about the natural and designed	direction through the same medium.	interactions—including
world(s). Arguments may also come	Interfering waves emerge unaffected by each other.	energy, matter, and
from current scientific or historical		information flows—
episodes in science.	ELECTROMAGNETIC RADIATION	within and between
Evaluate the claims, evidence, and	Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of	systems at different
reasoning behind currently accepted	changing electric and magnetic fields or as particles called photons. The wave model is useful	scales.
explanations or solutions to	for explaining many features of electromagnetic radiation, and the particle model explains	
determine the merits of arguments.	other features. (HS.PS4B.a)	Models can be used to
		simulate systems.
Evaluate the claims behind	Energy from the sun takes the form of electromagnetic waves such as infrared, visible, and	Models can be used to
currently accepted explanations to	ultraviolet electromagnetic waves.	simulate interactions.
determine the merits of arguments.	Electromagnetic waves carry a single form of energy called electromagnetic (radiant)	Models can be used
Evaluate the claims behind	energy.	simulate interactions
currently accepted solutions to	The radiation from the sun consists of a range of energies in the electromagnetic spectrum.	within systems at
determine the merits of arguments.	Electromagnetic radiation when absorbed can be converted to thermal energy.	different scales.
Evaluate the evidence behind	Electromagnetic waves carry energy that can have important consequences when	Models can be used
currently accepted explanations to	transferred to objects or substances.	simulate interactions
determine the merits of arguments.	Some electromagnetic radiation can cause damage to living cells.	
Evaluate the evidence behind		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
currently accepted solutions to		between systems at
determine the merits of arguments.		different scales.
Evaluate the reasoning behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted solutions to		
determine the merits of arguments.		

Clarification Statement

Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, interference, diffraction, and photoelectric effect. Quantum theory is not included.

