Grade 5 Learning Acceleration Guidance

Learning acceleration will ensure students have the skills they need to equitably access and practice on-grade level content. This chart is a reference guide for teachers to help them more quickly identify the specific prerequisite and co-requisite standards necessary for every Grade 5 math standard. Students should spend the large majority of their time on the major work of the grade (\square). Supporting work (\square) and, where appropriate, additional work (\square) can engage students in the major work of the grade.

$5^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$5^{\text {th }}$ Grade Standards Taught in Advance	$5^{\text {th }}$ Grade Standards Taught Concurrently
5.OA.A. 1 Use parentheses or brackets in numerical expressions, and evaluate expressions with these symbols.			
5.OA.A. 2 Write simple expressions that record calculations with whole numbers, fractions and decimals, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18,932+9.21)$ is three times as large as $18,932+9.21$, without having to calculate the indicated sum or product.		5.OA.A. 1 Use parentheses or brackets in numerical expressions, and evaluate expressions with these symbols.	5.NF.B. 5 Interpret multiplication as scaling (resizing). a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case). c. Explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 . d. Relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .

5.OA.B. 3

Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

5.NBT.A. 1

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.
4.OA.C. 5

Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.

4.NBT.A. 1

Recognize that in a multi-digit whole number less than or equal to $1,000,000$, a digit in one place represents ten times what it represents in the place to its right. Examples: (1) recognize that $700 \div 70=10$; (2) in the number 7,246 , the 2 represents 200, but in the number 7,426 the 2 represents 20 , recognizing that 200 is ten times as large as 20, by applying concepts of place value and division.

4.NF.C. 5

Express a fraction with denominator 10 as an equivalent fraction with denominator 100 and use this technique to add two fractions with respective denominators 10 and 100 . For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.

4.NF.C. 6

Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram; represent 62/100 of a dollar as \$0.62.

4.NF.C. 7

Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>,=$, or <, and justify the conclusions, e.g., by using a visual model.

$5^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$5^{\text {th }}$ Grade Standards Taught in Advance	$5^{\text {th }}$ Grade Standards Taught Concurrently
5.NBT.A. 2 Explain and apply patterns in the number of zeros of the product when multiplying a number by powers of 10. Explain and apply patterns in the values of the digits in the product or the quotient, when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 . For example, $10^{0}=1,10^{1}=10 \ldots$ and $2.1 \times 10^{2}=210$.		5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm. 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; justify the reasoning used with a written explanation.
5.NBT.A. 3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+4 \times 10+7 \times 1+3 \times$ $(1 / 10)+9 \times(1 / 100)+2 \times(1 / 1000) .$ b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	4.NBT.A. 2 Read and write multi-digit whole numbers less than or equal to $1,000,000$ using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. 4.NF.C. 7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual model.	5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	
5.NBT.A. 4 Use place value understanding to round decimals to any place.	4.NBT.A. 3 Use place value understanding to round multi-digit whole numbers, less than or equal to $1,000,000$, to any place.	5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. 5.NBT.A. 3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+4 \times 10+7 \times 1+3 \times$ $(1 / 10)+9 \times(1 / 100)+2 \times(1 / 1000)$. b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	

$5^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$5^{\text {th }}$ Grade Standards Taught in Advance	$5^{\text {th }}$ Grade Standards Taught Concurrently
5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm.	4.NBT.B. 4 Fluently add and subtract multi-digit whole numbers, with sums less than or equal to $1,000,000$, using the standard algorithm. 4.NBT.B. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	5.NBT.A. 2 Explain and apply patterns in the number of zeros of the product when multiplying a number by powers of 10 . Explain and apply patterns in the values of the digits in the product or the quotient, when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 . For example, $10^{0}=1,10^{1}=10 \ldots$ and $2.1 \times 10^{2}=210$. 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; justify the reasoning used with a written explanation.
5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, subtracting multiples of the divisor, and/or the relationship between multiplication and division. Illustrate and/or explain the calculation by using equations, rectangular arrays, area models, or other strategies based on place value.	4.NBT.B. 4 Fluently add and subtract multi-digit whole numbers, with sums less than or equal to 1,000,000, using the standard algorithm. 4.NBT.B. 6 Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. 5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm.	5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; justify the reasoning used with a written explanation.

5.NBT.B. 7

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; justify the reasoning used with a written explanation.

4.NBT.B. 4

Fluently add and subtract multi-digit whole numbers, with sums less than or equal to $1,000,000$, using the standard algorithm.

NBT.A

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left

5.NF.A. 1

Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12+15 / 12=$ 23/12. (In general, $a / b+c / d=(a d+b c) / b d$.)

5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times q \div n$. For example, use a visual fraction model to show understanding, and create a story context for $(m / n) \times q$
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [ln general, $(m / n) \times(c / d)=(m c) /(n d)$.]
c. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5.NF.B. 7

Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions
a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.
b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because 20 $x(1 / 5)=4$.
c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share

5.NBT.A. 2

Explain and apply patterns in the number of zeros of the product when multiplying a number by powers of 10 . Explain and apply patterns in the values of the digits in the product or the quotient, when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 . For example, $10^{0}=1,10^{1}=10 \ldots$ and $2.1 \times 10^{2}=210$.

5.NBT.B. 5

Fluently multiply multi-digit whole numbers using the standard algorithm.

5.NBT.B. 6

Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, subtracting multiples of the divisor, and/or the relationship between multiplication and division. Illustrate and/or explain the calculation by using equations, rectangular arrays, area models, or other strategies based on place value.

$5^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$5^{\text {th }}$ Grade Standards Taught in Advance	Grade Standards Taught Concurrently
		$1 / 2$ lb of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins?	
5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=$ $(a d+b c) / b d$.)	4.NF.A. 1 Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. (Denominators are limited to $2,3,4,5,6,8,10,12$, and 100.) 4.NF.B. 3 Understand a fraction a / b with $\mathrm{a}>1$ as a sum of fractions $1 / \mathrm{b}$. (Denominators are limited to $2,3,4,5,6,8,10,12$, and 100.) a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. Example: $3 / 4=1 / 4+1 / 4+1 / 4$. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+$ $1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1$ $+1 / 8=8 / 8+8 / 8+1 / 8$. c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction. d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.		

5.NF.A. 2

Solve word problems involving addition and subtraction of fractions.
a. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem.
b. Use benchmark fractions and number sense of fractions to estimate mentally and justify the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$.

Compare two fractions with different
numerators and different denominators, e.g., by creating common denominators or
numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model. (Denominators are limited to $2,3,4,5,6,8,10,12$, and 100.)

5.NF.A. 1

Add and subtract fractions with unlike
denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=$ $(a d+b c) / b d$.)

5.NF.B. 3

Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?
3.OA.A. 1

Interpret products of whole numbers, e.g.
interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.

3.OA.A. 2

nterpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equa shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.

3.OA.B. 6

Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .

4.OA.A. 1

Interpret a multiplication equation as a comparison and represent verbal statements of multiplicative comparisons as multiplication equations, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 , and 7 times as many as 5 . 4.OA.A. 2

Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive
comparison (Example: 6 times as many vs. 6 more than).

4.MD.A. 2

Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving whole numbers and/or simple fractions (addition and subtraction of fractions with like denominators and multiplying a fraction times a fraction or a whole number), and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement cale
5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times q \div n$. For example, use a visual fraction model to show understanding, and create a story context for (m / n) $\times q$.
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, $(\mathrm{m} / \mathrm{n})$ $x(c / d)=(m c) /(n d)$.
c. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5.NF.B. 5

Interpret multiplication as scaling (resizing).
a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case).
c. Explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .
d. Relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .

$5^{\text {th }}$ Grade Standard	Previous Grade(s) Standards
5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times q \div n$. For example, use a visual fraction model to show understanding, and create a story context for (m / n) x q. b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, $(m / n) \times(c / d)=(m c) /(n d)$.]	4.NF.B. 4 Multiply a fraction by a whole number. (Denominators are limited to $2,3,4,5,6,8$, 10, 12, and 100.) a. Understand a fraction a / b as a multiple of $1 / \mathrm{b}$. For example, use a visual fraction model to represent $5 / 4$ as the product 5 $x(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$. b. Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times$ (1/5), recognizing this product as 6/5. (In general, $n \times(a / b)=(n \times a) / b$.)
c. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.	c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
parts of a partition of a into n equal parts; equivalently, as the result of a equence operations, $m \times q \div n$. for example, use a visual fraction model to context for (m / n) x q.
Construct a model to develop understanding of the concept of multiplying two fractions and create a sery col, $m / n) \times(c / d)=(m c) /(n d)]$ Find the area of a rectangle with fractional side lengths by tiling it with squares of the appropriate unit fraction side lengths, and show that the multiplying the side lengths.
Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
4.NF.B. 4
(Denominators are limited to $2,3,4,5,6,8$, 10,12 , and 100.)
of 1 b For example, use a visual fraction model to represent $5 / 4$ as the product 5 $\times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.
Understand a multiple of a / b as a e of $1 / \mathrm{b}$, and use this understanding to multiply a fraction by a xample, use a visual general, $n \times(a / b)=(n \times a) / b$.)
Solve word problems involving multiplication of a fraction by a whole unber, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the paly, how man pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

Interpret a fraction as division of the numerator by the denominator ($a / b=a \div b$). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?

5.NF.B. 6

Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

5.NF.B. 7

Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.
b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because 20 $\times(1 / 5)=4$.
c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins?
3.OA.A. 1
Interpret products of whole numbers, e.g.,

Interpret products of whole numbers, e.g.,
interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.

3.OA.A. 2

Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.

4.OA.A. 1

Interpret a multiplication equation as a comparison and represent verbal statements of multiplicative comparisons as multiplication equations, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 , and 7 times as many as 5 .

4.OA.A. 2

Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive
comparison (Example: 6 times as many vs. 6 more than).

4.NF.A. 1

Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. (Denominators are limited to $2,3,4,5,6,8,10,12$, and 100.)

4.MD.A. 2

Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving whole numbers and/or simple fractions (addition and subtraction of fractions with like denominators and multiplying a fraction times a fraction or a whole number), and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times q \div n$. For example, use a visual fraction model to show understanding, and create a story context for (m / n) x q.
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, $(m / n) \times(c / d)=(m c) /(n d)$.]
c. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
5.OA.A. 2

Write simple expressions that record calculations with whole numbers, fractions and decimals, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18,932+9.21)$ is three times as large as $18,932+9.21$, without having to calculate the indicated sum or product.

5.NF.B. 3

Interpret a fraction as division of the numerator by the denominator ($a / b=a \div b$). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?

5.NF.B. 6

Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem
5.NF.B.6 ${ }^{\text {Sth }}$ Grade Standard
Solve real-world problems involving
multiplication of fractions and mixed
numbers, e.g., by using visual fraction models
or equations to represent the problem.

Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
3.OA.A. 1 Interpret products of whole numbers, e.g.
interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be
expressed as 5×7.

3.OA.A. 2

nterpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.

4.OA.A. 1

Interpret a multiplication equation as a comparison and represent verbal statements of multiplicative comparisons as multiplication equations, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 , and 7 times as many as 5 .

4.OA.A. 2

Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive
comparison (Example: 6 times as many vs. 6 more than).

4.MD.A. 2

Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving whole numbers and/or simple fractions (addition and subtraction of fractions with like denominators and multiplying a fraction times a fraction or a whole number), and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times q \div n$. For example, use a visual fraction model to show understanding, and create a story context for $(m / n) \times q$.
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, $(m / n) \times(c / d)=$ $(m c) /(n d)$.]
c. Find the area of a rectangle with fractional side length by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas

5.NF.B. 5

Interpret multiplication as scaling (resizing).
a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case).
c. Explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .
d. Relating the principle of fraction equivalence $a / b=(n \times$ $a) /(n \times b)$ to the effect of multiplying a / b by 1 .

5.Nf.B.

Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the fraction model to show the quotient. Use the
relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.
b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div$ $(1 / 5)=20$ because $20 \times(1 / 5)=4$.
c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visua fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins?
5.NF.B. 7
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.
b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$
c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?
3.OA.B. 6

Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8.

3.NF.A. 1

Understand a fraction $1 / b$, with denominators $2,3,4,6$, and 8 , as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$. 4.NF.B. 4

Multiply a fraction by a whole number.
(Denominators are limited to $2,3,4,5,6,8$, 10,12 , and 100.)
a. Understand a fraction a / b as a multiple of $1 / \mathrm{b}$. For example, use a visual fraction model to represent 5/4 as the product 5 $\times(1 / 4)$, recording the conclusion by the equation 5/4 $=5 \times(1 / 4)$.
b. Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times$ (1/5), recognizing this product as 6/5. (In general, $n \times(a / b)=(n \times a) / b$.)
c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times q \div n$. For example, use a visual fraction model to show understanding, and create a story context for (m / n) x q.
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, (m / n) $x(c / d)=(m c) /(n d)$.
c. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5.NF.B. 6

Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
5.MD.A. 1

Convert among different-sized standard measurement units within a given measurement and use these conversions in solving multi-step, real-world problems (e.g., convert 5 cm to $0.05 \mathrm{~m} ; 9 \mathrm{ft}$ to 108 in).
4.MD.A. 1

Know relative sizes of measurement units within one system of units including: ft , in; $\mathrm{km}, \mathrm{m}, \mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz} . ; \mathrm{l}, \mathrm{ml}$; hr, min, sec Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. (Conversions are limited to one-step conversions.) Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...

4.MD.A. 2

Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving whole numbers and/or simple fractions (addition and subtraction of fractions with like denominators and multiplying a fraction times a fraction or a whole number), and problems that require expressing
measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; justify the reasoning used with a written explanation.
5.MD.B. 2

Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4$, $1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.
4.MD.B. 4

Make a line plot to display a data set of
measurements in fractions of a unit ($1 / 2,1 / 4$, $1 / 8)$. Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

Solve word problems involving addition and

 subtraction of fractions.a. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem.
b. Use benchmark fractions and number sense of fractions to estimate mentally and justify the reasonableness of answers. For example recognize an incorrect result $2 / 5+1 / 2=3 / 7$ by observing that $3 / 7<1 / 2$.

5.NF.B. 6

Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

5.NF.B. 7

Apply and extend previous understandings of
division to divide unit fractions by whole numbers and whole numbers by unit fractions
a. Interpret division of a unit fraction by a nonzero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.
b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$ and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div$ $(1 / 5)=20$ because $20 \times(1 / 5)=4$.
c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins?
5.MD.C. 3

Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.
b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.

5.MD.C. 4

Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft , and improvised units.
3.MD.C. 5

Recognize area as an attribute of plane figures and understand concepts of area measurement.
a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.
b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.

5.MD.C. 3

Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.
b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.

5.MD.C. 5

Relate volume to the operations of multiplication and addition and solve realworld and mathematical problems involving volume.
a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent
threefold whole-number products as volumes, e.g., to represent the associative property of multiplication
b. Apply the
formulas $V=I \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with wholenumber edge lengths in the context of solving real-world and mathematical problems.
c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.

5.G.A. 1

Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number in the ordered pair indicates how far to travel from the origin in the direction of one axis, and the second number in the ordered pair indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).
3.OA.B. 5
Apply properties of operations as strategies
to multiply and divide. ${ }^{2}$ Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known.
(Commutative property of multiplication.) $3 \times$
5×2 can be found by $3 \times 5=15$, then $15 \times 2=$ 30 , or by $5 \times 2=10$, then $3 \times 10=30$.
(Associative property of multiplication.)
Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=$ $40+16=56$. (Distributive property.)

4.MD.A. 3

Apply the area and perimeter formulas for rectangles in real-world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.

5.MD.C. 3

Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume
b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.

5.MD.C. 4

Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft, and improvised units.

5. G A 2

Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

$5^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$5^{\text {th }}$ Grade Standards Taught in Advance	$5^{\text {th }}$ Grade Standards Taught Concurrently
5.G.A. 2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	3.NF.A. 2 Understand a fraction with denominators 2 , $3,4,6$ and 8 as a number on the number line; represent fractions on a number line diagram. a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.		5.G.A. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number in the ordered pair indicates how far to travel from the origin in the direction of one axis, and the second number in the ordered pair indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).
5.G.B. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	3.G.A. 1 Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. 4.G.A. 2 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.		
5.G.B. 4 Classify quadrilaterals in a hierarchy based on properties. (Students will define a trapezoid as a quadrilateral with at least one pair of parallel sides.)		5.G.B. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	

