2020-2021 Important Prerequisite Math Standards Secondary
In this training we will:

- learn about the [Louisiana Important Prerequisite Math Standards](https://example.com).
- experience two planning scenarios using the new document;
- practice planning for “just in time” supports.
You will need

- Grade 7 Module 3 Teacher Edition
- Grade 7 Standards Remediation Guide
- Louisiana Guide to Implementing Grade 7 Eureka Math
- Grade 7 Diagnostic Mapping Document
- Louisiana Important Prerequisite Math Standards 2020-2021
Collect your materials.
Think

Take a few minutes and reflect on the approaches you are taking this year to make sure your students are prepared.

On a piece of paper list your go-to strategies.

We will refer to this note at the end of this presentation.
The Department, building on resources provided by the Achievement Network, has released Important Prerequisite Math Standards Guidance for teachers for the 2020-2021 school year. This new document identifies:

• critical prerequisite math standards from previous grade levels needed to anticipate potential unfinished learning,
• suggestions for prioritizing content to save instructional time this year, and;
• aligned lessons for the most widely used Tier 1 curricula impacted by identified standards.

The purpose of this resource is to guide teachers’ strategic decision making to address current and ongoing learning gaps through the 2020-2021 school year.
Just in time support

Yes!

No!

Louisiana Believes
Important Prerequisite Math Standards Guidance for 2020-2021

<table>
<thead>
<tr>
<th>Prerequisite Standard</th>
<th>Grade-Level Standard</th>
<th>Standard Language</th>
<th>Instructional Time</th>
<th>Eureka Math</th>
<th>Illustrative Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.EE.B.3</td>
<td>Conceptual, Procedural, Application</td>
<td>Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: if a woman making $25 on an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.EE.B.4</td>
<td>Conceptual, Procedural, Application</td>
<td>Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.EE.B.5, 6.EE.B.6, 6.EE.B.7</td>
<td></td>
<td>Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, The perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.EE.B.4b</td>
<td>Conceptual, Procedural, Application</td>
<td>Solve word problems leading to inequalities of the form px + q > r, px + q ≥ r, px + q < r, or px + q ≤ r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.G.A.1, 6.G.A.3</td>
<td>Procedural, Application</td>
<td>Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emphasis:
- Equations (7.EE.B.4a) relative to inequalities (7.EE.B.4b)
- Reduce time spent creating scale drawings by hand.

Additional Resources:
- 1.16, 1.17, 1.18, 1.19, 1.20 (E), 1.21, 1.22, 4.12, 4.13, 4.14, 4.15, 7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.17, 7.18, 7.19, 7.20, 7.21, 7.22, 7.11, 7.12, 7.13, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.9, 7.13

Louisiana Believes
You will need access to all of the materials listed on slide 3
Module 3: Expressions and Equations

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1-A</td>
<td>7.EE.A.1*, 7.EE.A.2</td>
<td>6.EE.A.3, 6.EE.A.4</td>
<td>O</td>
<td>These Lessons focus on applying properties of operations as strategies to add and subtract linear expressions which will lead to mastery of 7.EE.A.1.</td>
</tr>
<tr>
<td>3.2-A</td>
<td>7.EE.A.1*</td>
<td>6.EE.A.3, 6.EE.A.4</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.3-A</td>
<td>7.EE.A.1*</td>
<td></td>
<td>O</td>
<td>This Lesson focuses on applying properties of operations as strategies to expand linear expressions which will lead to mastery of 7.EE.A.1.</td>
</tr>
<tr>
<td>3.4-A</td>
<td>7.EE.A.1</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.5-A</td>
<td>7.EE.A.1*</td>
<td></td>
<td>O</td>
<td>This Lesson focuses on applying properties of operations as strategies to add, subtract, and expand linear expressions which will lead to mastery of 7.EE.A.1.</td>
</tr>
<tr>
<td>3.6-A</td>
<td>7.EE.A.1*, 7.EE.A.2</td>
<td></td>
<td>O</td>
<td>This Lesson includes applying properties of operations as strategies to add, subtract, and expand linear expressions which will lead to mastery of 7.EE.A.1.</td>
</tr>
</tbody>
</table>
See the **LA Important Prerequisite Standards**

<table>
<thead>
<tr>
<th>6.EE.A.2a-b, 6.EE.A.3, 6.EE.A.4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.EE.A.1 Conceptual, Procedural</td>
<td>Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).</td>
</tr>
<tr>
<td>7.EE.A.2 Conceptual</td>
<td>Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that "increase by 5%" is the same as "multiply by 1.05."</td>
</tr>
</tbody>
</table>

| 7.EE.B.3 Conceptual, Procedural, Application | Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation. |

| 7.EE.B.4 Conceptual, Procedural, Application | Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. |

<table>
<thead>
<tr>
<th>6.EE.B.5, 6.EE.B.6, 6.EE.B.7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.EE.B.8 Conceptual, Procedural, Application</td>
<td>Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, The perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?</td>
</tr>
</tbody>
</table>

| 7.EE.B.4b Conceptual, Procedural, Application | Solve word problems leading to inequalities of the form $px + q > r$, $px + q < r$, or $px + q < r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions. |

Emphasize equations (7.EE.B.4a) relative to inequalities (7.EE.B.4b).

Louisiana Believes
Expressions and Equations

Module Overview

Topic A: Use Properties of Operations to Generate Equivalent Expressions (7.EE.A)
- Lessons 1–2: Generating Equivalent Expressions
- Lessons 3–4: Writing Products as Sums and Sums as Products
- Lesson 5: Using the Identity and Inverse to Write Equivalent Expressions
- Lesson 6: Collecting Rational Number Like Terms

Topic B: Solve Problems Using Expressions, Equations, and Inequalities (7.EE.B.3)
- Lesson 7: Understanding Equations
- Lessons 8–9: Using If-Then Moves in Solving Equations
- Lessons 10–11: Angle Problems and Solving Equations
- Lesson 12: Properties of Inequalities
- Lesson 13: Inequalities
- Lesson 14: Solving Inequalities
- Lesson 15: Graphing Solutions to Inequalities

Topic C: Use Equations and Inequalities to Solve Geometry Problems (7.G.B.4, 7.G.B.6)
- Lesson 16: The Most Famous Ratio of All
- Lesson 17: The Area of a Circle
- Lesson 18: More Problems on Area and Circumference
- Lesson 19: Unknown Area Problems on the Coordinate Plane
- Lesson 20: Composite Area Problems
- Lessons 21–22: Surface Area
- Lessons 23–24: The Volume of a Right Prism
- Lessons 25–26: Volume and Surface Area
Review Diagnostic Mapping Data

<table>
<thead>
<tr>
<th>Module</th>
<th>Aligned LEAP 360 Diagnostic Item(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1: Ratios and Proportional Relationships</td>
<td>1, 8, 10, 13, 17, 19, 23, 24, 33, 35, 37, 39, 44</td>
</tr>
<tr>
<td>Module 2: Rational Numbers</td>
<td>2, 4, 5, 7, 9, 12, 16, 18, 20, 21, 25, 28, 29, 32, 43</td>
</tr>
<tr>
<td>Module 3: Expressions and Equations</td>
<td>3, 6, 11, 14, 15, 22, 26, 27, 30, 31, 36, 38, 42</td>
</tr>
</tbody>
</table>

6.EE.A.3
6, 15, 22, 31

6.EE.A.4
3, 4, 27

6.EE.B.7
36, 38, 40, 42

6.EE.B.8
14, 26, 30
Consider using the Eureka Remediation Tools

<table>
<thead>
<tr>
<th>7th Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1, Topic A</td>
</tr>
<tr>
<td>Module 1, Topic B</td>
</tr>
<tr>
<td>Module 1, Topic C</td>
</tr>
<tr>
<td>Module 2, Topic A</td>
</tr>
<tr>
<td>Module 2, Topic B</td>
</tr>
<tr>
<td>Module 2, Topic C</td>
</tr>
<tr>
<td>Module 3, Topic A</td>
</tr>
<tr>
<td>Module 3, Topic B</td>
</tr>
<tr>
<td>Module 3, Topic C</td>
</tr>
<tr>
<td>Module 4, Topic A</td>
</tr>
</tbody>
</table>

Module 3 Topic A
- 6.EE.A.3
- 6.EE.A.4

Module 3 Topic B
- 4.MD.C.7
- 6.EE.B.6
- 6.EE.B.7
- 6.EE.B.8

Module 3 Topic C
- 6.G.A.1
- 6.G.A.2
- 6.G.A.3
- 6.G.A.4
Decision Point

What we know

• The content of Topic A and B are essential learning for students.
• The content of Topic C can be combined and deprioritized somewhat this year.
• We must look for opportunities to connect to 6.EE.A and 6.EE.B as within lesson scaffolds.
• Students will need a bridge up to 7.EE.B.4.b from 6.EE.B.8

What next?

• Are we on pace?
• Are the students ready?
• Which strategies, lessons or problems should we prioritize?
• When are we going to take action?
• What other data sources do we have?
Pelican Middle School is located in Southwest Louisiana. Today is November 13 which is about the 7th week of school. Students have been attending on an A/B rotation. The seventh grade team completed Module 1 today. The school year in the district is scheduled to end the last week of May. Normally, the module pacing would be in the twelfth week of school, beginning Module 3. Student Diagnostic Data is below listed in percent correct.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30% distributive property</td>
<td>50% simplifying expressions</td>
<td>60% inequalities</td>
<td>80% connecting the inequality to the number line graph.</td>
</tr>
<tr>
<td>80% adding monomials</td>
<td>20% division of decimal numbers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classroom Scenario 1
Pause for Discussion
Pelican Middle School is located in Southwest Louisiana. Today is November 13 which is about the 7th week of school. Students have been attending on an A/B rotation. The seventh grade team completed Module 1 today. The school year in the district is scheduled to end the last week of May. Normally, the module pacing would be in the twelfth week of school, beginning Module 3. Student Diagnostic Data is below listed in percent correct.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30% distributive property</td>
<td>50% simplifying expressions</td>
<td>60% inequalities</td>
<td>80% connecting the inequality to the number line graph.</td>
</tr>
<tr>
<td>80% adding monomials</td>
<td>20% division of decimal numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Action Plan Pelican Middle School

7th Grade

<table>
<thead>
<tr>
<th>Module 1, Topic A</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1, Topic B</td>
<td>✓</td>
</tr>
<tr>
<td>Module 1, Topic C</td>
<td>✓</td>
</tr>
<tr>
<td>Module 2, Topic A</td>
<td>✓</td>
</tr>
<tr>
<td>Module 2, Topic B</td>
<td>✓</td>
</tr>
<tr>
<td>Module 2, Topic C</td>
<td>✓</td>
</tr>
<tr>
<td>Module 3, Topic A</td>
<td>✓</td>
</tr>
<tr>
<td>Module 3, Topic B</td>
<td>✓</td>
</tr>
<tr>
<td>Module 3, Topic C</td>
<td>✓</td>
</tr>
<tr>
<td>Module 4, Topic A</td>
<td>✓</td>
</tr>
</tbody>
</table>

Module 3 Topic A
- 6.EE.A.3
- 6.EE.A.4

Module 3 Topic B
- 4.MD.C.7
- 6.EE.B.6
- 6.EE.B.7
- 6.EE.B.8

Module 3 Topic C
- 6.G.A.1
- 6.G.A.2
- 6.G.A.3
- 6.G.A.4
Action Plan for Pelican Middle School

Expressions and Equations

Module Overview

Topic A: Use Properties of Operations to Generate Equivalent Expressions (7.EE.A)
- Lessons 1–2: Generating Equivalent Expressions
- Lessons 3–4: Writing Products as Sums and Sums as Products
- Lesson 5: Using the Identity and Inverse to Write Equivalent Expressions
- Lesson 6: Collecting Rational Number Like Terms

Topic B: Solve Problems Using Expressions, Equations, and Inequalities (7.EE.B.3)
- Lesson 7: Understanding Equations
- Lessons 8–9: Using If-Then Moves in Solving Equations
- Lessons 10–11: Angle Problems and Solving Equations
- Lesson 12: Properties of Inequalities
- Lesson 13: Inequalities
- Lesson 14: Solving Inequalities
- Lesson 15: Graphing Solutions to Inequalities

- Lesson 16: The Most Famous Ratio of All
- Lesson 17: The Area of a Circle
- Lesson 18: More Problems on Area and Circumference
- Lesson 19: Unknown Area Problems on the Coordinate Plane
- Lesson 20: Composite Area Problems
- Lessons 21–22: Surface Area
- Lessons 23–24: The Volume of a Right Prism
- Lessons 25–26: Volume and Surface Area
Pause for Discussion
Classroom Scenario 2

Alligator Junior High is located in north Louisiana. Students attended a hybrid model, but returned to school week 10. Today is November 13 which is about the 11th week of school. Seventh grade students were just assessed on the Topic A of Module 2. The school year in the district is scheduled to end the last week of May. In a normal year, teachers would be beginning Module 3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32% distributive property</td>
<td>50% simplifying expressions</td>
<td>60% inequalities</td>
<td>80% connecting the inequality to the number line graph.</td>
</tr>
<tr>
<td>75% adding monomials</td>
<td>20% division of decimal numbers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32% distributive property

75% adding monomials

50% simplifying expressions

20% division of decimal numbers

60% inequalities

80% connecting the inequality to the number line graph.
Alligator Junior High is located in north Louisiana. Students attended a hybrid model, but returned to school week 10. Today is November 13 which is about the 11th week of school. Seventh grade students were just assessed on the Topic A of Module 2. The school year in the district is scheduled to end the last week of May. In a normal year, teachers would be beginning Module 3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32% distributive property</td>
<td>50% simplifying expressions</td>
<td>60% inequalities</td>
<td>80% connecting the inequality to the number line graph.</td>
</tr>
<tr>
<td>75% adding monomials</td>
<td>20% division of decimal numbers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Action Plan Alligator Junior High

<table>
<thead>
<tr>
<th>7th Grade</th>
<th>Module 3 Topic A</th>
<th>Module 3 Topic B</th>
<th>Module 3 Topic C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1, Topic A</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 1, Topic B</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 1, Topic C</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 2, Topic A</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 2, Topic B</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 2, Topic C</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 3, Topic A</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 3, Topic B</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 3, Topic C</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Module 4, Topic A</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Module 3 Topic A
- 6.EE.A.3
- 6.EE.A.4

Module 3 Topic B
- 4.MD.C.7
- 6.EE.B.6
- 6.EE.B.7
- 6.EE.B.8

Module 3 Topic C
- 6.G.A.1
- 6.G.A.2
- 6.G.A.3
- 6.G.A.4
Action Plan for Alligator Junior High

Expressions and Equations

Module Overview

Topic A: Use Properties of Operations to Generate Equivalent Expressions (7.EE.A)
Lessons 1–2: Generating Equivalent Expressions
Lessons 3–4: Writing Products as Sums and Sums as Products
Lesson 5: Using the Identity and Inverse to Write Equivalent Expressions
Lesson 6: Collecting Rational Number Like Terms

Topic B: Solve Problems Using Expressions, Equations, and Inequalities (7.EE.B.3)
Lesson 7: Understanding Equations
Lessons 8–9: Using If-Then Moves in Solving Equations
Lessons 10–11: Angle Problems and Solving Equations
Lesson 12: Properties of Inequalities
Lesson 13: Inequalities
Lesson 14: Solving Inequalities
Lesson 15: Graphing Solutions to Inequalities

- Lesson 16: The Most Famous Ratio of All
- Lesson 17: The Area of a Circle
- Lesson 18: More Problems on Area and Circumference
- Lesson 19: Unknown Area Problems on the Coordinate Plane
- Lesson 20: Composite Area Problems
- Lessons 21–22: Surface Area
- Lessons 23–24: The Volume of a Right Prism
- Lessons 25–26: Volume and Surface Area...
Pause for Discussion
Diverse Learners Cycle Across Content Areas

1. **Identify grade-level standards**
2. **Identify the skills and knowledge in ELA or prerequisite standards in Math needed to achieve mastery on grade-level work**
3. **Identify gaps to achieving mastery on grade-level work and core supports**
4. **Establish a plan to deliver core supports and monitor progress**
5. **Deliver core supports and measure progress**
6. **Reflect and revise plans for continuing or adjusting support**

Core supports are strategies or materials directly connected to high-quality curriculum to support diverse learners.

Louisiana Believes
• Continue to plan with the lense of readiness.
• Be willing to flex and adapt your plan.
• Keep good notes!!
Find your list of go-to strategies and reflect on these questions:

• How does your original list compare to what we have learned today?
• What do you commit to trying out in your classroom?
For questions, email STEM@la.gov.