Louisiana Guide to Implementing Eureka Math: Grade 3

To assist teachers with the implementation of the 3rd Grade Eureka Math curriculum, this document provides multiple layers of guidance regarding how Eureka Math lessons correlate with Louisiana Student Standards for Mathematics (LSSM). Eureka Math is a focused, coherent math curriculum which provides ample instructional guidance for teachers. This Louisiana Guide for Implementing Eureka Math goes a step further to point out places in which teachers may need to make strategic decisions considering student needs and time availability.

This guidance document is considered a “living” document as we believe that teachers and other educators will find ways to improve the document as they use it. Please send feedback to classroomsupporttoolbox@la.gov so that we may use your input when updating this guide.

Updated October 12, 2018
Table of Contents

- **Sample Year-Long Schedule for Math Instruction** .. 3
- **Focus in the Standards** ... 5
- **Overview of Lessons** .. 5
 - Module 1: Properties of Multiplication and Division and Solving Problems with Units of 2-5 and 10 ... 6
 - Module 2: Place Value and Problem Solving with Units of Measure 8
 - Module 3: Multiplication and Division with Units of 0, 1, 6-9, and Multiples of 10 10
 - Module 4: Multiplication and Area ... 12
 - Module 5: Fractions as Numbers on the Number Line ... 14
 - Module 6: Collecting and Displaying Data .. 17
 - Module 7: Geometry and Measurement Word Problems .. 18
- **Additional Notes on Eureka-Specific Strategies/Representations** 22
- **Standards by Course** ... 22
- **Standards by Module** ... 26
- **Standards by Lesson** ... 30
 - **Major Work** .. 30
 - **Supporting Work** .. 32
 - **Additional Work** ... 32
Sample Year-Long Schedule for Math Instruction
3rd Grade

The following sample schedule integrates the Eureka curriculum, LEAP 360 Interim Assessments and flex days to allow teachers to move at a pace that best supports student learning. Flex days could be used for remediation, enrichment lessons, assessment, or other instructional activities. This sample should be used to guide instructional timing but should not dictate exactly what lesson a teacher should be on during a given day. The guidance has been broken into 9 weeks, as this is the calendar that most Louisiana schools systems follow.

- Coding: 1.1-A represents Module 1.Lesson 1.Topic A
- Lessons marked as “optional for remediation” in the Louisiana Guide to Implementing Eureka, have been marked by *. Teachers should determine best use of these lessons based on their students.
- Lessons marked as “optional for enrichment” in the Louisiana Guide to Implementing Eureka have not been included in this calendar. Teachers may determine to use these during “flex” days.
- Even though only one day on this calendar has been marked for the LEAP Interim assessments, teachers may determine to split these over 2-3 days.

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLEX</td>
<td>FLEX</td>
<td>LEAP 360 Diagnostic Assessment</td>
<td>1.1-A</td>
<td>1.2-A</td>
</tr>
<tr>
<td>Week 2</td>
<td>1.3-A</td>
<td>1.4-B</td>
<td>1.5-B</td>
<td>1.6-B</td>
<td>1.7-C</td>
</tr>
<tr>
<td>Week 3</td>
<td>1.8-C</td>
<td>1.9-C</td>
<td>1.10-C</td>
<td>1.11-D</td>
<td>1.12-D</td>
</tr>
<tr>
<td>Week 4</td>
<td>1.13-D</td>
<td>FLEX</td>
<td>1.14-E</td>
<td>*1.15-E</td>
<td>1.16-E</td>
</tr>
<tr>
<td>Week 5</td>
<td>1.17-E</td>
<td>1.18-F</td>
<td>1.19-F</td>
<td>1.20-F</td>
<td>1.21-F</td>
</tr>
<tr>
<td>Week 6</td>
<td>FLEX</td>
<td>FLEX</td>
<td>FLEX</td>
<td>FLEX</td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>2.2-A</td>
<td>2.3-A</td>
<td>2.4-A</td>
<td>2.5-A</td>
<td>2.6-B</td>
</tr>
<tr>
<td>Week 8</td>
<td>2.7-B</td>
<td>2.8-B</td>
<td>2.9-B</td>
<td>2.10-B</td>
<td>2.11-B</td>
</tr>
<tr>
<td>Week 9</td>
<td>2.12-C</td>
<td>2.13-C</td>
<td>2.14-C</td>
<td>2.15-D</td>
<td>2.16-D</td>
</tr>
<tr>
<td>Week 10</td>
<td>2.17-D</td>
<td>2.18-E</td>
<td>2.19-E</td>
<td>2.20-E</td>
<td>2.21-E</td>
</tr>
<tr>
<td>Week 11</td>
<td>FLEX</td>
<td>FLEX</td>
<td>FLEX</td>
<td>3.1-A</td>
<td>3.2-A</td>
</tr>
<tr>
<td>Week 12</td>
<td>3.3-A</td>
<td>3.4-B</td>
<td>3.5-B</td>
<td>3.6-B</td>
<td>3.7-B</td>
</tr>
<tr>
<td>Week 13</td>
<td>3.9-C</td>
<td>3.10-C</td>
<td>3.11-C</td>
<td>3.12-D</td>
<td>3.13-D</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Week 15</td>
<td>3.19-F</td>
<td>3.20-F</td>
<td>3.21-F</td>
<td>FLEX</td>
<td>FLEX</td>
</tr>
<tr>
<td>Week 16</td>
<td>FLEX</td>
<td>Gr. 3 LEAP 360 Interim Form 1</td>
<td>4.1-A</td>
<td>4.2-A</td>
<td>4.3-A</td>
</tr>
<tr>
<td>Week 17</td>
<td>4.4-A</td>
<td>4.5-B</td>
<td>4.6-B</td>
<td>4.7-B</td>
<td>4.8-B</td>
</tr>
<tr>
<td>Week 18</td>
<td>4.9-C</td>
<td>4.10-C</td>
<td>4.11-C</td>
<td>4.12-D</td>
<td>FLEX</td>
</tr>
<tr>
<td>Week 19</td>
<td>FLEX</td>
<td>FLEX</td>
<td>*5.1-A</td>
<td>*5.2-A</td>
<td>5.3-A</td>
</tr>
<tr>
<td>Week 20</td>
<td>5.4-A</td>
<td>5.5-B</td>
<td>5.6-B</td>
<td>5.7-B</td>
<td>5.8-B</td>
</tr>
<tr>
<td>Week 21</td>
<td>5.9-B</td>
<td>5.10-C</td>
<td>5.11-C</td>
<td>*5.12-C</td>
<td>*5.13-C</td>
</tr>
<tr>
<td>Week 22</td>
<td>5.14-D</td>
<td>5.15-D</td>
<td>5.16-D</td>
<td>5.17-D</td>
<td>5.20-E</td>
</tr>
<tr>
<td>Week 23</td>
<td>5.21-E</td>
<td>5.22-E</td>
<td>5.23-E</td>
<td>5.24-E</td>
<td>5.25-E</td>
</tr>
<tr>
<td>Week 24</td>
<td>5.26-E</td>
<td>*5.27-E</td>
<td>5.28-F</td>
<td>5.29-F</td>
<td>FLEX</td>
</tr>
<tr>
<td>Week 25</td>
<td>FLEX</td>
<td>FLEX</td>
<td>Gr. 3 LEAP 360 Interim Form 2</td>
<td>6.1-A</td>
<td>6.2-A</td>
</tr>
<tr>
<td>Week 26</td>
<td>6.3-A</td>
<td>6.4-A</td>
<td>6.5-B</td>
<td>6.6-B</td>
<td>6.7-B</td>
</tr>
<tr>
<td>Week 27</td>
<td>6.8-B</td>
<td>6.9-B</td>
<td>FLEX</td>
<td>FLEX</td>
<td>FLEX</td>
</tr>
<tr>
<td>Week 28</td>
<td>7.1-A</td>
<td>7.2-A</td>
<td>7.3-A</td>
<td>7.4-B</td>
<td>7.5-B</td>
</tr>
<tr>
<td>Week 29</td>
<td>7.10-C</td>
<td>7.12</td>
<td>7.13</td>
<td>7.14-C</td>
<td>7.15-C</td>
</tr>
<tr>
<td>Week 30</td>
<td>7.17-C</td>
<td>7.18-D</td>
<td>7.19-D</td>
<td>7.20-D</td>
<td>7.21-D</td>
</tr>
<tr>
<td>Week 31</td>
<td>7.22-D</td>
<td>7.23-E</td>
<td>7.28-E</td>
<td>7.29-E</td>
<td>7.30-E</td>
</tr>
<tr>
<td>Week 32</td>
<td>FLEX</td>
<td>FLEX</td>
<td>FLEX</td>
<td>FLEX</td>
<td>FLEX</td>
</tr>
</tbody>
</table>

Week 33
Reserved for state testing (dates will vary)

Week 34
To best prepare your students for success in Grade 4, use this time to continue pursuing mastery of grade-level fluencies: 3.OA.C.7 and 3.NBT.A.2. If grade-level fluencies have been mastered, enrichment lessons 5.18-D, 5.19-D, 5.30-F, and 7.11-C may prove advantageous for preparing students for future success.
Focus in the Standards

Not all content in a given grade is emphasized equally in the standards. Some clusters require greater emphasis than others based on the depth of the ideas, the time that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. More time in these areas is also necessary for students to meet the Louisiana Standards for Mathematical Practice.

To say that some things have greater emphasis is not to say that anything in the standards can safely be neglected in instruction. Neglecting material will leave gaps in student skill and understanding and may leave students unprepared for the challenges of a later grade. Students should spend the large majority of their time on the major work of the grade (■). Supporting work (■) and, where appropriate, additional work (■) can engage students in the major work of the grade.

Overview of the Lessons

Eureka Math modules are separated into topics (divided by black lines) and lessons. This section is devoted to helping teachers identify the standards on which each lesson is focused, whether on grade level or not. The grade level standards are color-coded to denote their focus. Again, this alignment does not explicitly align to the alignment guidance provided in Eureka Math. Furthermore, not every lesson is entirely focused on grade level standards, and, as such, many lessons can be used for either remediation or enrichment. In this section you will also find notes on specific lessons that can be used for differentiation, along with details/rationale for the recommended action. An asterisk is used to denote a standard that is not addressed in its entirety in that single lesson. The part(s) of the standard that are addressed are directly quoted from the LSSM standard and are shown in purple.
Module 1: Properties of Multiplication and Division and Solving Problems with Units of 2-5 and 10

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1-A</td>
<td>3.OA.A.1</td>
<td>2.NBT.B.5</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.2-A</td>
<td>3.OA.A.1</td>
<td>2.OA.C.4</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.3-A</td>
<td>3.OA.A.1</td>
<td>2.OA.C.4</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.4-B</td>
<td>3.OA.A.2, 3.OA.A.3</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.5-B</td>
<td>3.OA.A.2, 3.OA.A.3</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.6-B</td>
<td>3.OA.A.1, 3.OA.A.2, 3.OA.A.3, 3.OA.A.4, 3.OA.B.6</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.7-C</td>
<td>3.OA.A.1, 3.OA.A.5</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.8-C</td>
<td>3.OA.A.1, 3.OA.A.3, 3.OA.A.4, 3.OA.B.5</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.9-C</td>
<td>3.OA.A.1, 3.OA.A.3, 3.OA.B.5</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.10-C</td>
<td>3.OA.A.1, 3.OA.B.5</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.11-D</td>
<td>3.OA.A.3</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.12-D</td>
<td>3.OA.A.3, 3.OA.C.7</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.13-D</td>
<td>3.OA.A.3, 3.OA.A.4, 3.OA.C.7</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.14-E</td>
<td>3.OA.A.3, 3.OA.C.7</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15-E</td>
<td>3.OA.A.1, 3.OA.A.3</td>
<td></td>
<td>R</td>
<td>- Reserve these Lessons to be used with students who are struggling with and/or need extra practice to master the concept of the commutative property of multiplication which will lead to mastery of 3.OA.B.5.</td>
</tr>
<tr>
<td>1.16-E</td>
<td>3.OA.A.3, 3.OA.C.7</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.17-E</td>
<td>3.OA.A.1, 3.OA.A.2, 3.OA.A.3, 3.OA.A.4, 3.OA.B.6</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.18-F</td>
<td>3.OA.A.3, 3.OA.B.5</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.19-F</td>
<td>3.OA.B.5</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1.20-F</td>
<td>3.OA.D.8*</td>
<td></td>
<td>O</td>
<td>- This Lesson focuses on solving two-step word problems which will lead to mastery of 3.OA.D.8.</td>
</tr>
<tr>
<td>1.21-F</td>
<td>3.OA.D.8</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
Module 2: Place Value and Problem Solving with Units of Measure

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1-A</td>
<td></td>
<td>2.MD.C.7</td>
<td>O</td>
<td>These Lessons focus on establishing time as a continuous measurement and making the connection between a clock and the number line. Although they do not explicitly align to any grade level standards, the concepts developed in these Lessons should enable students to better engage in subsequent Lessons and, ultimately, lead to mastery of 3.MD.A.1.</td>
</tr>
<tr>
<td>2.2-A</td>
<td></td>
<td>2.MD.C.7</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.3-A</td>
<td>3.MD.A.1a*</td>
<td></td>
<td>O</td>
<td>This Lesson focuses on telling and writing time to the nearest minute on an analog and digital clock which will lead to mastery of 3.MD.A.1a.</td>
</tr>
<tr>
<td>2.4-A</td>
<td>3.MD.A.1c</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.5-A</td>
<td>3.MD.A.1c</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.6-B</td>
<td>3.MD.A.2*</td>
<td></td>
<td>O</td>
<td>This Lesson includes measuring masses of objects which will lead to mastery of 3.MD.A.2.</td>
</tr>
<tr>
<td>2.7-B</td>
<td>3.MD.A.2*</td>
<td></td>
<td>O</td>
<td>This Lesson includes measuring and estimating masses of objects which will lead to mastery of 3.MD.A.2.</td>
</tr>
<tr>
<td>2.8-B</td>
<td>3.MD.A.2</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.9-B</td>
<td>3.MD.A.2</td>
<td></td>
<td>O</td>
<td>It should be noted that this Lesson focuses on introducing the standard units of liters and milliliters and establishing the relationship between the two measurement units.</td>
</tr>
<tr>
<td>2.10-B</td>
<td>3.NBT.A.2, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td>This Lesson focuses on measuring and estimating liquid volumes of objects which will lead to mastery of 3.MD.A.2.</td>
</tr>
<tr>
<td>2.11-B</td>
<td>3.NBT.A.2, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.12-C</td>
<td>3.NBT.A.1, 3.MD.A.2*</td>
<td>2.MD.A.1</td>
<td>O</td>
<td>This Lesson focuses on measuring and estimating liquid volumes and masses of objects which will lead to mastery of 3.MD.A.2.</td>
</tr>
<tr>
<td>2.13-C</td>
<td>3.NBT.A.1</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.14-C</td>
<td>3.NBT.A.1</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.15-D</td>
<td>3.NBT.A.2, 3.MD.A.1c, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.16-D</td>
<td>3.NBT.A.2, 3.MD.A.1c, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td>• These Lessons include solving one-step word problems involving masses or volumes that are given in the same units which will lead to mastery of 3.MD.A.2.</td>
</tr>
<tr>
<td>2.17-D</td>
<td>3.NBT.A.1, 3.NBT.A.2, 3.MD.A.1c, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.18-E</td>
<td>3.NBT.A.2, 3.MD.A.1c, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.19-E</td>
<td>3.NBT.A.2, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td>• These Lessons include solving one-step word problems involving masses or volumes that are given in the same units which will lead to mastery of 3.MD.A.2.</td>
</tr>
<tr>
<td>2.20-E</td>
<td>3.NBT.A.1, 3.NBT.A.2, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2.21-E</td>
<td>3.NBT.A.1, 3.NBT.A.2, 3.MD.A.1c, 3.MD.A.2*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
Module 3: Multiplication and Division with Units of 0, 1, 6-9, and Multiples of 10

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1-A</td>
<td>3.OA.B.5, 3.OA.D.9</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.2-A</td>
<td>3.OA.A.3, 3.OA.B.5</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.3-A</td>
<td>3.OA.A.3, 3.OA.A.4, 3.OA.D.8*</td>
<td></td>
<td>O</td>
<td>• This Lesson includes representing these problems using equations with a letter standing for the unknown quantity which will lead to mastery of 3.OA.D.8.</td>
</tr>
<tr>
<td>3.4-B</td>
<td>3.OA.B.5, 3.OA.C.7</td>
<td>2.NBT.B.5</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.5-B</td>
<td>3.OA.B.5, 3.OA.C.7</td>
<td>2.NBT.B.5</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.6-B</td>
<td>3.OA.B.5</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.7-B</td>
<td>3.OA.A.3, 3.OA.D.8*</td>
<td></td>
<td>O</td>
<td>• This Lesson includes representing these problems using equations with a letter standing for the unknown quantity which will lead to mastery of 3.OA.D.8.</td>
</tr>
<tr>
<td>3.8-C</td>
<td></td>
<td>5.OA.A.1</td>
<td>E</td>
<td>• This Lesson focuses on using parentheses in numerical expressions which is the explicit expectation of 5.OA.A.1. It is expected that students in Grade 3 should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations); however, this Lesson does not help students understand the conventional order as many of the expressions do not need parenthesis to make true equations (e.g., Homework problems 2b and 2c).</td>
</tr>
<tr>
<td>3.9-C</td>
<td>3.OA.B.5</td>
<td>5.OA.A.1</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.10-C</td>
<td>3.OA.B.5, 3.OA.C.7</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.11-C</td>
<td>3.OA.A.3, 3.OA.D.8*</td>
<td></td>
<td>O</td>
<td>• This Lesson focuses on solving two-step word problems using the four operations and representing these problems using equations with a letter standing for the unknown quantity which will lead to mastery of 3.OA.D.8.</td>
</tr>
<tr>
<td>3.12-D</td>
<td>3.OA.A.1, 3.OA.B.5, 3.OA.B.6, 3.OA.C.7</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14-D</td>
<td>3.OA.B.5, 3.OA.D.9</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.15-D</td>
<td>3.OA.A.3, 3.OA.D.8*</td>
<td></td>
<td>O</td>
<td>• This Lesson focuses on solving two-step word problems using the four operations and representing these problems using equations with a letter standing for the unknown quantity which will lead to mastery of 3.OA.D.8.</td>
</tr>
<tr>
<td>3.17-E</td>
<td>3.OA.B.5, 3.OA.C.7, 3.OA.D.9</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.18-E</td>
<td>3.OA.D.8</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.19-F</td>
<td>3.OA.C.7, 3.OA.D.9, 3.NBT.A.3</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.20-F</td>
<td>3.OA.B.5, 3.NBT.A.3</td>
<td>5.OA.A.1</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3.21-F</td>
<td>3.OA.D.8*</td>
<td></td>
<td>O</td>
<td>• This Lesson focuses on solving two-step word problems using the four operations and representing these problems using equations with a letter standing for the unknown quantity which will lead to mastery of 3.OA.D.8.</td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
Module 4: Multiplication and Area

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2-A</td>
<td>3.MD.C.5, 3.MD.C.5a, 3.MD.C.5b, 3.MD.C.6</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4.3-A</td>
<td>3.MD.C.5, 3.MD.C.5a, 3.MD.C.5b, 3.MD.C.6</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4.5-B</td>
<td>3.MD.C.5b, 3.MD.C.6, 3.MD.C.7, 3.MD.C.7a, 3.MD.C.7b</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4.6-B</td>
<td>3.MD.C.5b, 3.MD.C.6, 3.MD.C.7, 3.MD.C.7a, 3.MD.C.7b</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4.7-B</td>
<td>3.MD.C.5b, 3.MD.C.6, 3.MD.C.7, 3.MD.C.7a, 3.MD.C.7b</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4.8-B</td>
<td>3.MD.C.7, 3.MD.C.7a, 3.MD.C.7b</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4.9-C</td>
<td>3.MD.C.7, 3.MD.C.7b*, 3.MD.C.7c</td>
<td></td>
<td>O</td>
<td>• These Lessons include multiplying side lengths to find areas of rectangles with whole-number side lengths in the context of solving mathematical problems which will lead to mastery of 3.MD.C.7b.</td>
</tr>
<tr>
<td>4.10-C</td>
<td>3.MD.C.7, 3.MD.C.7b*, 3.MD.C.7c</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11-C</td>
<td>3.MD.C.7, 3.MD.C.7b*, 3.MD.C.7c</td>
<td></td>
<td>O</td>
<td>This Lesson includes multiplying side lengths to find areas of rectangles with whole-number side lengths in the context of solving mathematical problems which will lead to mastery of 3.MD.C.7b.</td>
</tr>
<tr>
<td>4.12-D</td>
<td>3.MD.C.7b*, 3.MD.C.7c</td>
<td></td>
<td>O</td>
<td>This Lesson includes multiplying side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems which will lead to mastery of 3.MD.C.7b.</td>
</tr>
<tr>
<td>4.13-D</td>
<td>3.MD.C.5b, 3.MD.C.6, 3.MD.C.7b*</td>
<td>4.MD.D.8</td>
<td>E</td>
<td>These Lessons include multiplying side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems which will lead to mastery of 3.MD.C.7b. These Lessons focus on finding areas by decomposing into rectangles or completing composite figures to form rectangles in the context of solving real-world and mathematical problems which is not an explicit expectation of the 3.MD.C standards.</td>
</tr>
<tr>
<td>4.14-D</td>
<td>3.MD.C.7b*</td>
<td>4.MD.D.8</td>
<td>E</td>
<td>These Lessons include multiplying side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems which will lead to mastery of 3.MD.C.7b.</td>
</tr>
<tr>
<td>4.15-D</td>
<td>3.MD.C.7b*</td>
<td>4.MD.D.8</td>
<td>E</td>
<td>These Lessons focus on finding areas by decomposing into rectangles or completing composite figures to form rectangles in the context of solving real-world and mathematical problems which is not an explicit expectation of the 3.MD.C standards.</td>
</tr>
<tr>
<td>4.16-D</td>
<td>3.MD.C.7b*</td>
<td>4.MD.D.8</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
Module 5: Fractions as Numbers on the Number Line

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level</th>
<th>Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1-A</td>
<td></td>
<td></td>
<td>2.G.A.3</td>
<td>R</td>
<td>Reserve these Lessons to be used with students who need a review of previous grade level concepts prior to engaging with Grade 3 concepts.</td>
</tr>
<tr>
<td>5.2-A</td>
<td></td>
<td></td>
<td>2.G.A.3</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>5.3-A</td>
<td>3.G.A.2*</td>
<td></td>
<td>2.G.A.3</td>
<td>O</td>
<td>These Lessons include partitioning shapes into parts with equal areas which will lead to mastery of 3.G.A.2.</td>
</tr>
<tr>
<td>5.4-A</td>
<td>3.G.A.2*</td>
<td></td>
<td>2.G.A.3</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5.5-B</td>
<td>3.NF.A.1*, 3.G.A.2</td>
<td></td>
<td>2.G.A.3</td>
<td>O</td>
<td>This Lesson includes understanding a fraction (\frac{1}{b}), with denominators 2, 3, 4, 6, and 8, as the quantity formed by 1 part when a whole is partitioned into (b) equal parts which will lead to mastery of 3.NF.A.1.</td>
</tr>
<tr>
<td>5.6-B</td>
<td>3.NF.A.1, 3.G.A.2</td>
<td></td>
<td>2.G.A.3</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5.7-B</td>
<td>3.NF.A.1, 3.G.A.2</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5.8-B</td>
<td>3.NF.A.1, 3.G.A.2</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5.9-B</td>
<td>3.NF.A.1, 3.G.A.2</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5.10-C</td>
<td>3.NF.A.1, 3.NF.A.3d*, 3.G.A.2</td>
<td></td>
<td></td>
<td>O</td>
<td>This Lesson focuses on comparing two fractions with the same numerator by reasoning about their size and recording the results of comparisons with the symbols >, =, or < which will lead to mastery of 3.NF.A.3d.</td>
</tr>
<tr>
<td>5.11-C</td>
<td>3.NF.A.3d, 3.G.A.2</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5.12-C</td>
<td>3.NF.A.1</td>
<td></td>
<td></td>
<td>R</td>
<td>Reserve this Lesson to be used with students who are struggling with and/or need extra practice to master the concept of the relationship between a unit fraction and its whole which will lead to mastery of 3.NF.A.1 and 3.NF.A.3d.</td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
</table>
| 5.13-C | 3.NF.A.1, 3.NF.A.3d*, 3.G.A.2 | | R | **This Lesson includes recognizing that comparisons are valid only when the two fractions refer to the same whole which will lead to mastery of 3.NF.A.3d.**
Reserve this Lesson to be used with students who are struggling with and/or need extra practice to master the concept of the relationship between a unit fraction and its whole which will lead to mastery of 3.NF.A.1 and 3.NF.A.3d. |
| 5.14-D | 3.NF.A.2a, 3.NF.A.2b | | O | |
| 5.15-D | 3.NF.A.2b | | O | |
| 5.16-D | 3.NF.A.2b, 3.NF.A.3c | | O | |
| 5.17-D | 3.NF.A.2b, 3.NF.A.3c | | O | |
| 5.18-D | 3.NF.A.3d* | | E | **This Lesson includes comparing two fractions and recording the results of comparisons with the symbols >, =, or < which will lead to mastery of 3.NF.A.3d.**
Although this Lesson does focus on comparing fractions, it does so using the number line which is beyond the explicit expectations of 3.NF.A.3d. The decision to use this Lesson should be made at the teacher level. |
| 5.19-D | 3.NF.A.2a, 3.NF.A.2b, 3.NF.A.3d* | | E | **This Lesson includes comparing two fractions and recording the results of comparisons with the symbols >, =, or < which will lead to mastery of 3.NF.A.3d.**
This Lesson focuses on understanding distance and position on the number line as strategies for comparing fractions and is identified as ‘optional’ by the authors. |
| 5.20-E | 3.NF.A.1, 3.NF.A.3a* | | O | **This Lesson focuses on understanding two fractions as equivalent (equal) if they are the same size which will lead to mastery of 3.NF.A.3a.** |
| 5.21-E | 3.NF.A.2a, 3.NF.A.2b, 3.NF.A.3a, 3.NF.A.3c* | | O | **This Lesson includes recognizing fractions that are equivalent to whole numbers which will lead to mastery of 3.NF.A.3c.** |
| 5.22-E | 3.NF.A.1, 3.NF.A.3a, 3.NF.A.3b | | O | |

R = optional for remediation; E = optional for enrichment; O = on grade level
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.23-E</td>
<td>3.NF.A.2a, 3.NF.A.2b, 3.NF.A.3a, 3.NF.A.3b, 3.NF.A.3c*</td>
<td>O</td>
<td>• These Lessons include recognizing fractions that are equivalent to whole numbers which will lead to mastery of 3.NF.A.3c.</td>
<td></td>
</tr>
<tr>
<td>5.25-E</td>
<td>3.NF.A.1, 3.NF.A.3c, 3.G.A.2</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.26-E</td>
<td>3.NF.A.2a, 3.NF.A.2b, 3.NF.A.3a, 3.NF.A.3b, 3.NF.A.3c</td>
<td>O</td>
<td>• It should be noted that some of the visual fraction models used in the Conceptual Development are not sized consistently and, as a result, may cause some confusion for students.</td>
<td></td>
</tr>
<tr>
<td>5.27-E</td>
<td>3.NF.A.1, 3.NF.A.3a, 3.NF.A.3b, 3.NF.A.3c, 3.G.A.2</td>
<td>R</td>
<td>• Reserve this Lesson to be used with students who are struggling with and/or need extra practice to master the concept of equivalent fractions which will lead to mastery of 3.NF.A.3.</td>
<td></td>
</tr>
<tr>
<td>5.28-F</td>
<td>3.NF.A.1, 3.NF.A.3d*, 3.G.A.2</td>
<td>O</td>
<td>• This Lesson focuses on comparing two fractions with the same numerator by reasoning about their size which will lead to mastery of 3.NF.A.3d.</td>
<td></td>
</tr>
<tr>
<td>5.29-F</td>
<td>3.NF.A.1, 3.NF.A.3d, 3.G.A.2</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.30-F</td>
<td></td>
<td>E</td>
<td>• This Lesson focuses on partitioning various wholes precisely into equal parts using a number line method and does not explicitly align to any Grade 3 standards.</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
Module 6: Collecting and Displaying Data

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1-A</td>
<td>3.MD.B.3</td>
<td>2.MD.D.10</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>6.2-A</td>
<td>3.MD.B.3*</td>
<td></td>
<td>O</td>
<td>This Lesson focuses on drawing a scaled picture graph and a scaled bar graph to represent a data set with several categories which will lead to mastery of 3.MD.B.3.</td>
</tr>
<tr>
<td>6.3-A</td>
<td>3.MD.B.3</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>6.4-A</td>
<td>3.MD.B.3</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
| 6.5-B | 3.MD.B.4* | | O | This Lesson focuses on **generating measurement data by measuring lengths using rulers marked with halves and fourths of an inch** which will lead to mastery of 3.MD.B.4.
 It should be noted that this Lesson expects students to create their own ruler showing inches, half-inches, and quarter-inches. Although this is not an explicit expectation of the target standard, the experience should help develop students’ conceptual understanding and prove beneficial. The decision to include this portion of the Lesson should be made at the teacher level. |
| 6.6-B | | | O | This Lesson focuses on interpreting measurement data from line plots which is not an explicit expectation of the target standard. Although this Lesson does not align to the explicit expectation of 3.MD.B.4, it should prove beneficial for students long term. The decision to use this Lesson should be made at the teacher level. |
| 6.7-B | 3.MD.B.4* | | O | These Lessons focus on **showing the data by making a line plot** which will lead to mastery of 3.MD.B.4. |
| 6.8-B | 3.MD.B.4* | | O | |
| 6.9-B | 3.MD.B.3, 3.MD.B.4* | | O | This Lesson includes **showing the data by making a line plot** which will lead to mastery of 3.MD.B.4. |

R = optional for remediation; E = optional for enrichment; O = on grade level
Module 7: Geometry and Measurement Word Problems

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1-A</td>
<td>3.OA.D.8*</td>
<td></td>
<td>O</td>
<td>These Lessons focus on solving two-step word problems using the four operations and representing these problems using equations with a letter standing for the unknown quantity which will lead to mastery of 3.OA.D.8.</td>
</tr>
<tr>
<td>7.2-A</td>
<td>3.OA.D.8*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>7.3-A</td>
<td>3.OA.D.8*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>7.4-B</td>
<td>3.G.A.1</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>7.5-B</td>
<td>3.G.A.1</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>7.6-B</td>
<td>2.G.A.1, 4.G.A.2</td>
<td></td>
<td>E</td>
<td>This Lesson focuses on drawing shapes having specified attributes and classifying two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size.</td>
</tr>
<tr>
<td>7.7-B</td>
<td></td>
<td></td>
<td>E</td>
<td>This Lesson focuses on reasoning about composing and decomposing polygons using tetrominoes which is not an explicit expectation of the standards for any grade/course.</td>
</tr>
<tr>
<td>7.8-B</td>
<td></td>
<td></td>
<td>E</td>
<td>This Lesson focuses on creating a tangram puzzle which is not an explicit expectation of the standards for any grade/course.</td>
</tr>
<tr>
<td>7.9-B</td>
<td></td>
<td></td>
<td>E</td>
<td>This Lesson focuses on reasoning about composing and decomposing polygons using tangrams which is not an explicit expectation of the standards for any grade/course.</td>
</tr>
<tr>
<td>7.10-C</td>
<td></td>
<td></td>
<td>O</td>
<td>It should be noted that although this Lesson does not align to any Grade 3 standard, it does establish the concept of perimeter that is the basis of the entire Topic and should prove to be advantageous as they pursue mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td>7.11-C</td>
<td></td>
<td></td>
<td>E</td>
<td>This Lesson focuses on understanding distance and position on the number line as strategies for comparing fractions and is identified as ‘optional’ by the authors.</td>
</tr>
<tr>
<td>7.12-C</td>
<td>3.MD.D.8*</td>
<td>2.MD.A.1</td>
<td>O</td>
<td>These Lessons focus on solving mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths which will lead to mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td>7.13-C</td>
<td>3.MD.D.8*</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level</th>
<th>Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.14-C</td>
<td>3.MD.D.8*</td>
<td></td>
<td></td>
<td>O</td>
<td>• This Lesson focuses on solving mathematical problems involving perimeters of polygons, including finding an unknown side length which will lead to mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td>7.15-C</td>
<td>3.MD.D.8*</td>
<td></td>
<td></td>
<td>O</td>
<td>• This Lesson focuses on solving real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths and finding an unknown side length which will lead to mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td>7.16-C</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>• This Lesson focuses on finding the perimeter of circular objects which is beyond the explicit expectation of the target standard. The decision to use this Lesson should be made at the teacher level.</td>
</tr>
<tr>
<td>7.17-C</td>
<td>3.MD.D.8*</td>
<td></td>
<td></td>
<td>O</td>
<td>• This Lesson focuses on solving mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths and finding an unknown side length which will lead to mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td>7.18-D</td>
<td>3.MD.D.8*</td>
<td></td>
<td></td>
<td>O</td>
<td>• This Lesson focuses on solving mathematical problems involving perimeters of polygons, including exhibiting rectangles with the same area and different perimeters which will lead to mastery of 3.MD.D.8.</td>
</tr>
</tbody>
</table>
| 7.19-D | 3.MD.B.4*, | | | O | • This Lesson includes showing the data by making a line plot which will lead to mastery of 3.MD.B.4.
| | 3.MD.D.8* | | | | • This Lesson focuses on solving mathematical problems involving perimeters of polygons, including exhibiting rectangles with the same area and different perimeters which will lead to mastery of 3.MD.D.8. |
| 7.20-D | 3.MD.D.8* | | | O | • These Lessons focus on solving mathematical problems involving perimeters of polygons, including exhibiting rectangles with the same perimeter and different areas which will lead to mastery of 3.MD.D.8. |
| 7.21-D | 3.MD.D.8* | | | O | • These Lessons focus on solving mathematical problems involving perimeters of polygons, including exhibiting rectangles with the same perimeter and different areas which will lead to mastery of 3.MD.D.8. |
| 7.22-D | 3.MD.B.4*, | | | O | • This Lesson includes showing the data by making a line plot which will lead to mastery of 3.MD.B.4.
<p>| | 3.MD.D.8* | | | | • This Lesson focuses on solving mathematical problems involving perimeters of polygons, including exhibiting rectangles with the same perimeter and different areas which will lead to mastery of 3.MD.D.8. |</p>
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.23-E</td>
<td>3.MD.D.8*</td>
<td></td>
<td>O</td>
<td>• This Lesson focuses on solving real-world and mathematical problems involving perimeters of polygons which will lead to mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td>7.24-E</td>
<td>3.MD.D.8*</td>
<td></td>
<td>E</td>
<td>• These Lessons include solving real-world and mathematical problems involving perimeters of polygons, including exhibiting rectangles with the same perimeter and different areas which will lead to mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td>7.25-E</td>
<td>3.MD.D.8*</td>
<td></td>
<td>E</td>
<td>• These Lessons focus on applying understanding of area and perimeter to build a robot. While there is no new content presented in these Lessons, some students may find these Lessons fun and engaging. The decision to use these Lessons should be made at the teacher level.</td>
</tr>
<tr>
<td>7.26-E</td>
<td>3.MD.B.4*, 3.MD.D.8*</td>
<td></td>
<td>E</td>
<td>• This Lesson includes showing the data by making a line plot which will lead to mastery of 3.MD.B.4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• This Lesson includes solving real-world and mathematical problems involving perimeters of polygons, including exhibiting rectangles with the same perimeter and different areas which will lead to mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• It should be noted that this Lesson includes finding the perimeter of circular objects which is beyond the explicit expectation of the target standard. The decision to use this Lesson should be made at the teacher level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• This Lesson focuses on applying understanding of area and perimeter to build a robot. While there is no new content presented in this Lesson, some students may find this Lesson fun and engaging. The decision to use this Lesson should be made at the teacher level.</td>
</tr>
<tr>
<td>7.27-E</td>
<td>3.MD.D.8*</td>
<td></td>
<td>E</td>
<td>• This Lesson includes solving real-world and mathematical problems involving perimeters of polygons, including exhibiting rectangles with the same perimeter and different areas which will lead to mastery of 3.MD.D.8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• This Lesson focuses on applying understanding of area and perimeter to build a robot. While there is no new content presented in this Lesson, some students may find this Lesson fun and engaging. The decision to use this Lesson should be made at the teacher level.</td>
</tr>
<tr>
<td>7.28-E</td>
<td>3.MD.C.7b*, 3.MD.D.8</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment; O = on grade level
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Course Level Content Standards</th>
<th>Standards from other Grades</th>
<th>Action</th>
<th>Notes/Rationale for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.29-E</td>
<td>3.MD.C.7b*, 3.MD.D.8</td>
<td></td>
<td>O</td>
<td>• These Lessons include multiplying side lengths to find areas of rectangles with whole-number side lengths in the context of solving mathematical problems which will lead to mastery of 3.MD.C.7b.</td>
</tr>
<tr>
<td>7.30-E</td>
<td>3.MD.C.7b*, 3.MD.D.8</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
Additional Notes on Eureka-Specific Strategies/Representations

In Module 3 there exists problems throughout the entirety of the Module that extend beyond the explicit denominator limitations for the 3.NF standards. Furthermore, there exists many problems targeting application of the concepts articulated in the 3.NF standards. Such problems are generally beyond the explicit expectations of the 3.NF standards, and the decision to include such problems should be made at the teacher level.

Standards by Course

This section aims to further inform teachers on the alignment between Eureka Math and the LSSM. Standards, or parts thereof, highlighted in orange are addressed in Eureka Math but with limited exposure. It is recommended that teachers pay careful attention to these places to ensure students have mastered the standards, or parts thereof, using only Eureka Math. If not, teachers should supplement to ensure mastery for all students. Standards, or parts thereof, highlighted in red are not included in the Eureka Math curriculum thus necessitating the need to supplement to ensure mastery for all students.

<table>
<thead>
<tr>
<th>Code</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.OA.A.1</td>
<td>Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.</td>
</tr>
<tr>
<td>3.OA.A.2</td>
<td>Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.</td>
</tr>
<tr>
<td>3.OA.A.3</td>
<td>Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.</td>
</tr>
<tr>
<td>3.OA.A.4</td>
<td>Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48$, $5 = _ + 3$, $6 \times 6 = ?$</td>
</tr>
<tr>
<td>3.OA.B.5</td>
<td>Apply properties of operations as strategies to multiply and divide.2 Examples: If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property.)</td>
</tr>
<tr>
<td>3.OA.B.6</td>
<td>Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8.</td>
</tr>
<tr>
<td>Code</td>
<td>Standard</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>3.OA.C.7</td>
<td>Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that (8 \times 5 = 40), one knows (40 \div 5 = 8)) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.</td>
</tr>
<tr>
<td>3.OA.D.8</td>
<td>Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.</td>
</tr>
<tr>
<td>3.OA.D.9</td>
<td>Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.</td>
</tr>
<tr>
<td>3.NBT.A.1</td>
<td>Use place value understanding to round whole numbers to the nearest 10 or 100.</td>
</tr>
<tr>
<td>3.NBT.A.2</td>
<td>Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.</td>
</tr>
<tr>
<td>3.NBT.A.3</td>
<td>Multiply one-digit whole numbers by multiples of 10 in the range 10–90 (e.g., 9 80, 5 60) using strategies based on place value and properties of operations.</td>
</tr>
<tr>
<td>3.NF.A.1</td>
<td>Understand a fraction (1/b), with denominators 2, 3, 4, 6, and 8, as the quantity formed by 1 part when a whole is partitioned into (b) equal parts; understand a fraction (a/b) as the quantity formed by a parts of size (1/b).</td>
</tr>
<tr>
<td>3.NF.A.2</td>
<td>Understand a fraction with denominators 2, 3, 4, 6, and 8 as a number on the number line; represent fractions on a number line diagram.</td>
</tr>
<tr>
<td>3.NF.A.2a</td>
<td>Represent a fraction (1/b) on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into (b) equal parts. Recognize that each part has size (1/b) and that the endpoint of the part based at 0 locates the number (1/b) on the number line.</td>
</tr>
<tr>
<td>3.NF.A.2b</td>
<td>Represent a fraction (a/b) on a number line diagram by marking off a lengths (1/b) from 0. Recognize that the resulting interval has size (a/b) and that its endpoint locates the number (a/b) on the number line.</td>
</tr>
<tr>
<td>3.NF.A.3</td>
<td>Explain equivalence of fractions with denominators 2, 3, 4, 6, and 8 in special cases, and compare fractions by reasoning about their size.</td>
</tr>
<tr>
<td>3.NF.A.3a</td>
<td>Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.</td>
</tr>
<tr>
<td>3.NF.A.3b</td>
<td>Recognize and generate simple equivalent fractions, e.g., (1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model.</td>
</tr>
<tr>
<td>Code</td>
<td>Standard</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>3.NF.A.3c</td>
<td>Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form (3 = \frac{3}{1}); recognize that (\frac{6}{1} = 6); locate (\frac{4}{4}) and (1) at the same point of a number line diagram.</td>
</tr>
<tr>
<td>3.NF.A.3d</td>
<td>Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols (>), (=), or (<), and justify the conclusions, e.g., by using a visual fraction model.</td>
</tr>
<tr>
<td>3.MD.A.1</td>
<td>Understand time to the nearest minute.</td>
</tr>
<tr>
<td>3.MD.A.1a</td>
<td>Tell and write time to the nearest minute and measure time intervals in minutes, within 60 minutes, on an analog and digital clock.</td>
</tr>
<tr>
<td>3.MD.A.1b</td>
<td>Calculate elapsed time greater than 60 minutes to the nearest quarter and half hour on a number line diagram.</td>
</tr>
<tr>
<td>3.MD.A.1c</td>
<td>Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.</td>
</tr>
<tr>
<td>3.MD.A.2</td>
<td>Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.</td>
</tr>
<tr>
<td>3.MD.B.3</td>
<td>Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.</td>
</tr>
<tr>
<td>3.MD.B.4</td>
<td>Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units— whole numbers, halves, or quarters.</td>
</tr>
<tr>
<td>3.MD.C.5</td>
<td>Recognize area as an attribute of plane figures and understand concepts of area measurement.</td>
</tr>
<tr>
<td>3.MD.C.5a</td>
<td>A square with side length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to measure area.</td>
</tr>
<tr>
<td>3.MD.C.5b</td>
<td>A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.</td>
</tr>
<tr>
<td>3.MD.C.6</td>
<td>Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).</td>
</tr>
<tr>
<td>3.MD.C.7</td>
<td>Relate area to the operations of multiplication and addition.</td>
</tr>
<tr>
<td>3.MD.C.7a</td>
<td>Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.</td>
</tr>
<tr>
<td>Code</td>
<td>Standard</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>3.MD.C.7b</td>
<td>Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.</td>
</tr>
<tr>
<td>3.MD.C.7c</td>
<td>Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b + c$ is the sum of $a + b$ and $a + c$. Use area models to represent the distributive property in mathematical reasoning.</td>
</tr>
<tr>
<td>3.MD.D.8</td>
<td>Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.</td>
</tr>
<tr>
<td>3.MD.E.9</td>
<td>Solve word problems involving pennies, nickels, dimes, quarters, and bills greater than one dollar, using the dollar and cent symbols appropriately.</td>
</tr>
<tr>
<td>3.G.A.1</td>
<td>Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.</td>
</tr>
<tr>
<td>3.G.A.2</td>
<td>Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.</td>
</tr>
</tbody>
</table>
Standards by Module

Using the alignment guidance provided in Eureka Math, each module is presented visually, outlining the topics and the standards taught within each topic. The standards are color-coded to denote their focus, and the standard(s) that serve as the primary focus, for that topic, are bolded.

<table>
<thead>
<tr>
<th>Module 1: Properties of Multiplication and Division and Solving Problems with Units of 2–5 and 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic A</td>
</tr>
<tr>
<td>Multiplication and the Meaning of the Factors</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Module 2: Place Value and Problem Solving with Units of Measure

<table>
<thead>
<tr>
<th>Topic A</th>
<th>Topic B</th>
<th>Topic C</th>
<th>Topic D</th>
<th>Topic E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.NBT.A.2</td>
<td>3.NBT.A.2</td>
<td>3.NBT.A.1</td>
<td>3.NBT.A.1</td>
<td>3.NBT.A.1</td>
</tr>
<tr>
<td></td>
<td>3.MD.A.2</td>
<td>3.MD.A.2</td>
<td></td>
<td>3.MD.A.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.MD.A.2</td>
</tr>
</tbody>
</table>

Module 3: Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10

<table>
<thead>
<tr>
<th>Topic A</th>
<th>Topic B</th>
<th>Topic C</th>
<th>Topic D</th>
<th>Topic E</th>
<th>Topic F</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Properties of Multiplication and Division</td>
<td>Multiplication and Division Using Units of 6 and 7</td>
<td>Multiplication and Division Using Units up to 8</td>
<td>Multiplication and Division Using Units of 9</td>
<td>Analysis of Patterns and Problem Solving Including Units of 0 and 1</td>
<td>Multiplication of Single-Digit Factors and Multiples of 10</td>
</tr>
<tr>
<td>3.OA.A.1</td>
<td>3.OA.A.1</td>
<td>3.OA.A.1</td>
<td>3.OA.A.1</td>
<td>3.OA.A.1</td>
<td>3.OA.A.1</td>
</tr>
<tr>
<td>3.OA.B.5</td>
<td>3.OA.B.5</td>
<td>3.OA.B.5</td>
<td>3.OA.B.5</td>
<td>3.OA.B.5</td>
<td>3.OA.D.8</td>
</tr>
<tr>
<td>3.OA.C.7</td>
<td>3.OA.C.7</td>
<td>3.OA.C.7</td>
<td>3.OA.C.7</td>
<td>3.OA.C.7</td>
<td>3.OA.D.8</td>
</tr>
</tbody>
</table>
Module 4: Multiplication and Area

<table>
<thead>
<tr>
<th>Topic A</th>
<th>Topic B</th>
<th>Topic C</th>
<th>Topic D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations for Understanding Area</td>
<td>Concepts of Area Measurement</td>
<td>Arithmetic Properties Using Area Models</td>
<td>Applications of Area Using Side Lengths of Figures</td>
</tr>
<tr>
<td>3.MD.C.5</td>
<td>3.MD.C.5</td>
<td>3.MD.C.5</td>
<td>3.MD.C.5</td>
</tr>
<tr>
<td>3.MD.C.6</td>
<td>3.MD.C.6</td>
<td>3.MD.C.7a</td>
<td>3.MD.C.6</td>
</tr>
<tr>
<td>3.MD.C.7</td>
<td>3.MD.C.7a</td>
<td>3.MD.C.7b</td>
<td>3.MD.C.7a</td>
</tr>
<tr>
<td>3.MD.C.7d</td>
<td>3.MD.C.7b</td>
<td>3.MD.C.7c</td>
<td>3.MD.C.7c</td>
</tr>
<tr>
<td>3.MD.C.7d</td>
<td>3.MD.C.7c</td>
<td>3.MD.C.7d</td>
<td>3.MD.C.7d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module 5: Fractions as Numbers on the Number Line

<table>
<thead>
<tr>
<th>Topic A</th>
<th>Topic B</th>
<th>Topic C</th>
<th>Topic D</th>
<th>Topic E</th>
<th>Topic F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partitioning a Whole into Equal Parts</td>
<td>Unit Fractions and Their Relation to the Whole</td>
<td>Comparing Unit Fractions and Specifying the Whole</td>
<td>Fractions on the Number Line</td>
<td>Equivalent Fractions1</td>
<td>Comparison, Order, and Size of Fractions</td>
</tr>
<tr>
<td>3.NF.A.3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.G.A.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module 6: Collecting and Displaying Data

<table>
<thead>
<tr>
<th>Topic A</th>
<th>Topic B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate and Analyze Categorical Data</td>
<td>Generate and Analyze Measurement Data</td>
</tr>
<tr>
<td>3.MD.B.3</td>
<td>3.MD.B.4</td>
</tr>
</tbody>
</table>

Module 7: Geometry and Measurement Word Problems

<table>
<thead>
<tr>
<th>Topic A</th>
<th>Topic B</th>
<th>Topic C</th>
<th>Topic D</th>
<th>Topic E</th>
<th>Topic F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solving Word Problems</td>
<td>Attributes of Two-Dimensional Figures</td>
<td>Problem Solving with Perimeter</td>
<td>Recording Perimeter and Area Data on Line Plots</td>
<td>Problem Solving with Perimeter and Area</td>
<td>Year in Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.G.A.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.G.A.1</td>
</tr>
</tbody>
</table>
Standards by Lesson

Eureka Math does not provide a lesson-level alignment to the Louisiana Student Standards for Mathematics (LSSM). Although this work was influenced by the alignment guidance provided in Eureka Math, it does not always align perfectly with the alignment guidance provided in Eureka Math.

The numbers listed denote the Module and Lesson in which a particular standard is addressed. For example, Module 1, Lesson 1 (1.1) helps move students towards mastery of 3.OA.A.1.

<table>
<thead>
<tr>
<th>Major Work</th>
<th>3.OA.A.1</th>
<th>1.1, 1.2, 1.3, 1.6, 1.7, 1.8, 1.9, 1.10, 1.15 (R), 1.17 3.12, 3.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.OA.A.2</td>
<td>1.4, 1.5, 1.6, 1.17</td>
<td></td>
</tr>
<tr>
<td>3.OA.A.3</td>
<td>1.4, 1.5, 1.6, 1.8, 1.9, 1.11, 1.12, 1.13, 1.14, 1.15 (R), 1.17, 1.18 3.2, 3.3, 3.7, 3.11, 3.15</td>
<td></td>
</tr>
<tr>
<td>3.OA.A.4</td>
<td>1.6, 1.8, 1.13, 1.17 3.3, 3.13, 3.16</td>
<td></td>
</tr>
<tr>
<td>3.OA.B.5</td>
<td>1.7, 1.8, 1.9, 1.10, 1.18, 1.19 3.1, 3.2, 3.4, 3.5, 3.6, 3.9, 3.10, 3.12, 3.13, 3.14, 3.16, 3.17, 3.20</td>
<td></td>
</tr>
<tr>
<td>3.OA.B.6</td>
<td>1.6, 1.17 3.12, 3.13, 3.16</td>
<td></td>
</tr>
<tr>
<td>3.OA.C.7</td>
<td>1.12, 1.13, 1.14, 1.16 3.4, 3.5, 3.10, 3.12, 3.13, 3.16, 3.17, 3.19</td>
<td></td>
</tr>
<tr>
<td>3.OA.D.8</td>
<td>1.20, 1.21 3.3, 3.7, 3.11, 3.15, 3.18, 3.21 7.1, 7.2, 7.3</td>
<td></td>
</tr>
<tr>
<td>3.OA.D.9</td>
<td>3.1, 3.13, 3.14, 3.16, 3.17, 3.19</td>
<td></td>
</tr>
<tr>
<td>3.NF.A.1</td>
<td>5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.12 (R), 5.13 (R), 5.20, 5.22, 5.24, 5.25, 5.27 (R), 5.28, 5.29</td>
<td></td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment
Major Work

<table>
<thead>
<tr>
<th>3.NF.A.2</th>
<th>see alignment for 3.NF.A.2a and 3.NF.A.2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.NF.A.2a</td>
<td>5.14, 5.19 (E), 5.21, 5.23, 5.26</td>
</tr>
<tr>
<td>3.NF.A.2b</td>
<td>5.14, 5.15, 5.16, 5.17, 5.19 (E), 5.21, 5.23, 5.26</td>
</tr>
<tr>
<td>3.NF.A.3</td>
<td>see alignment for 3.NF.A.3a, 3.NF.A.3b, 3.NF.A.3c, and 3.NF.A.3d</td>
</tr>
<tr>
<td>3.NF.A.3a</td>
<td>5.20, 5.21, 5.22, 5.23, 5.24, 5.26, 5.27 (R)</td>
</tr>
<tr>
<td>3.NF.A.3b</td>
<td>5.22, 5.23, 5.24, 5.26, 5.27 (R)</td>
</tr>
<tr>
<td>3.NF.A.3c</td>
<td>5.16, 5.17, 5.21, 5.23, 5.24, 5.25, 5.26, 5.27 (R)</td>
</tr>
<tr>
<td>3.NF.A.3d</td>
<td>5.10, 5.11, 5.13 (R), 5.18 (E), 5.19 (E), 5.28, 5.29</td>
</tr>
<tr>
<td>3.MD.A.1</td>
<td>see alignment for 3.MD.A.1a and 3.MD.A.1c</td>
</tr>
<tr>
<td>3.MD.A.1a</td>
<td>2.3</td>
</tr>
<tr>
<td>3.MD.A.1b</td>
<td></td>
</tr>
<tr>
<td>3.MD.A.1c</td>
<td>2.4, 2.5, 2.15, 2.16, 2.17, 2.18, 2.21</td>
</tr>
<tr>
<td>3.MD.A.2</td>
<td>2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21</td>
</tr>
<tr>
<td>3.MD.C.5</td>
<td>4.1, 4.2, 4.3, 4.4</td>
</tr>
<tr>
<td>3.MD.C.5a</td>
<td>4.1, 4.2, 4.3, 4.4</td>
</tr>
<tr>
<td>3.MD.C.5b</td>
<td>4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.13 (E)</td>
</tr>
<tr>
<td>3.MD.C.6</td>
<td>4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.13 (E)</td>
</tr>
<tr>
<td>3.MD.C.7</td>
<td>4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11</td>
</tr>
<tr>
<td>3.MD.C.7a</td>
<td>4.4, 4.5, 4.6, 4.7, 4.8</td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment
Major Work

3.MD.C.7b	4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 (E), 4.14 (E), 4.15 (E), 4.16 (E)
	7.28, 7.29, 7.30
3.MD.C.7c	4.9, 4.10, 4.11, 4.12

Supporting Work

<table>
<thead>
<tr>
<th>3.MD.B.3</th>
<th>6.1, 6.2, 6.3, 6.4, 6.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.MD.B.4</td>
<td>6.5, 6.6, 6.7, 6.8, 6.9</td>
</tr>
<tr>
<td></td>
<td>7.19, 7.22, 7.26 (E)</td>
</tr>
<tr>
<td>3.MD.E.9</td>
<td></td>
</tr>
<tr>
<td>3.G.A.1</td>
<td>7.4, 7.5</td>
</tr>
<tr>
<td>3.G.A.2</td>
<td>5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.13 (R), 5.24, 5.25, 5.27 (R), 5.28, 5.29</td>
</tr>
</tbody>
</table>

Additional Work

<table>
<thead>
<tr>
<th>3.NBT.A.1</th>
<th>2.12, 2.13, 2.14, 2.17, 2.20, 2.21</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.NBT.A.2</td>
<td>2.10, 2.11, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21</td>
</tr>
<tr>
<td>3.NBT.A.3</td>
<td>3.19, 3.20</td>
</tr>
<tr>
<td>3.MD.D.8</td>
<td>7.12, 7.13, 7.14, 7.15, 7.17, 7.18, 7.19, 7.20, 7.21, 7.22, 7.23, 7.24 (E), 7.25 (E), 7.26 (E), 7.27 (E), 7.28, 7.29, 7.30</td>
</tr>
</tbody>
</table>

R = optional for remediation; E = optional for enrichment