Grade 3 Guide to Rigor in Mathematics 2.0

In order to provide a quality mathematical education for students, instruction must be rigorous, focused, and coherent. This document provides explanations and a standards-based alignment to assist teachers in providing the first of those: a rigorous education. While this document will help teachers identify the explicit component(s) of rigor called for by each of the Louisiana Student Standards for Mathematics (LSSM), it is up to the teacher to ensure his/her instruction aligns to the expectations of the standards, allowing for the proper development of rigor in the classroom.

This rigor document is considered a "living" document as we believe that teachers and other educators will find ways to improve the document as they use it. Please send feedback to classroomsupporttoolbox@la.gov
so that we may use your input when updating this guide.

Posted August 2, 2017

Table of Contents

Introduction
Definitions of the Components of Rigor 2
A Special Note on Procedural Skill and Fluency 2
Recognizing the Components of Rigor 3
Focus in the standards 3
Grade 3 LSSM Rigor Alignments 4

Definitions of the Components of Rigor

Rigorous teaching in mathematics does not simply mean increasing the difficulty or complexity of practice problems. Incorporating rigor into classroom instruction and student learning means exploring at a greater depth, the standards and ideas with which students are grappling. There are three components of rigor that will be expanded upon in this document, and each is equally important to student mastery: Conceptual Understanding, Procedural Skill and Fluency, and Application.

- Conceptual Understanding refers to understanding mathematical concepts, operations, and relations. It is more than knowing isolated facts and methods. Students should be able to make sense of why a mathematical idea is important and the kinds of contexts in which it is useful. It also allows students to connect prior knowledge to new ideas and concepts.
- Procedural Skill and Fluency is the ability to apply procedures accurately, efficiently, and flexibly. It requires speed and accuracy in calculation while giving students opportunities to practice basic skills. Students' ability to solve more complex application tasks is dependent on procedural skill and fluency.
- Application provides valuable context for learning and the opportunity to solve problems in a relevant and a meaningful way. It is through real-world application that students learn to select an efficient method to find a solution, determine whether the solution makes sense by reasoning, and develop critical thinking skills.

A Special Note on Procedural Skill and Fluency

While speed is definitely a component of fluency, it is not necessarily speed in producing an answer; rather, fluency can be observed by watching the speed with which a student engages with a particular problem. Furthermore, fluency does not require the most efficient strategy. The standards specify grade-level appropriate strategies or types of strategies with which students should demonstrate fluency (e.g., 1.OA.C. 6 allows for students to use counting on, making ten, creating equivalent but easier or known sums, etc.). It should also be noted that teachers should expect some procedures to take longer than others (e.g., fluency with the standard algorithm for division, 6.NS.B.2, as compared to fluently adding and subtracting within 10, 1.OA.C.6).

Standards identified as targeting procedural skill and fluency do not all have an expectation of automaticity and/or rote recall. Only two standards, 2.OA.B. 2 and 3.OA.C.7, have explicit expectations of students knowing facts from memory. Other standards targeting procedural skill and fluency do not require students to reach automaticity. For example, in 4.G.A.2, students do not need to reach automaticity in classifying two-dimensional figures.

Recognizing the Components of Rigor

In the LSSM each standard is aligned to one or more components of rigor, meaning that each standard aims to promote student growth in conceptual understanding, procedural skill and fluency, and/or application. Key words and phrases in the standards indicate which component(s) of rigor the standard is targeting: conceptual understanding standards often use terms like understand, recognize, or interpret; procedural skill and fluency standards tend to use words like fluently, find, or solve; and application standards typically use phrases like word problems or real-world problems. Key words and phrases are underlined in each standard to help clarify the identified component(s) of rigor for each standard.

Focus in the Standards

Not all content in a given grade is emphasized equally in the standards. Some clusters require greater emphasis than others based on the depth of the ideas, the time that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. More time in these areas is also necessary for students to meet the Louisiana Standards for Mathematical Practice. To say that some things have greater emphasis is not to say that anything in the standards can safely be neglected in instruction. Neglecting material will leave gaps in student skill and understanding and may leave students unprepared for the challenges of a later grade. Students should spend the large majority of their time on the major work of the grade (\square). Supporting work (\square) and, where appropriate, additional work (\square) can engage students in the major work of the grade.

$3^{\text {rd }}$ Grade

LSSM - 3 ${ }^{\text {rd }}$ Grade		Explicit Component(s) of Rigor		
Code	Standard	Conceptual Understanding	Procedural Skill and Fluency	Application
3.OA.A. 1	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as $5 \times$ 7.	\checkmark		
3.OA.A. 2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$	\checkmark		
3.OA.A. 3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.			\checkmark
3.OA.A. 4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=\ldots \div 3,6 \times 6=$?	\checkmark		
3.OA.B. 5	Apply properties of operations as strategies to multiply and divide. ${ }^{2}$ Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=40+16=56$. (Distributive property.)	\checkmark		
3.OA.B. 6	Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .	\checkmark		
3.OA.C. 7	Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.		\checkmark	
3.OA.D. 8	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	\checkmark		\checkmark
3.OA.D. 9	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	\checkmark		

LSSM - 3 ${ }^{\text {rd }}$ Grade		Explicit Component(s) of Rigor		
Code	Standard	Conceptual Understanding	Procedural Skill and Fluency	Application
3.NBT.A. 1		\checkmark		
3.NBT.A. 2	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.		\checkmark	
3.NBT.A. 3	Multiply one-digit whole numbers by multiples of 10 in the range $10-90$ (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations.	\checkmark	\checkmark	
3.NF.A. 1	Understand a fraction $1 / \mathrm{b}$, with denominators $2,3,4,6$, and 8 , as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.	\checkmark		
3.NF.A. 2	Understand a fraction with denominators $2,3,4,6$, and 8 as a number on a number line diagram.	\checkmark		
3.NF.A.2a	Represent a fraction $1 / \mathrm{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.	\checkmark		
3.NF.A.2b	Represent a fraction a / b on a number line diagram by marking off a lengths $1 / \mathrm{b}$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.	\checkmark		
3.NF.A. 3	Explain equivalence of fractions with denominators $2,3,4,6$, and 8 in special cases, and compare fractions by reasoning about their size.	\checkmark		
3.NF.A.3a	Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.	\checkmark		
3.NF.A.3b	Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3)$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.	\checkmark		
3.NF.A.3c	Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate $4 / 4$ and 1 at the same point of a number line diagram.	\checkmark		
3.NF.A.3d	Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.	\checkmark		
3.MD.A. 1	Understand time to the nearest minute.	\checkmark		
3.MD.A.1a	Tell and write time to the nearest minute and measure time intervals in minutes, within 60 minutes, on an analog and digital clock.	\checkmark	\checkmark	
3.MD.A.1b	Calculate elapsed time greater than 60 minutes to the nearest quarter and half hour on a number line diagram.		\checkmark	

3.MD.A.1c	Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.			\checkmark
3.MD.A. 2	Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.	\checkmark	\checkmark	\checkmark
3.MD.B. 3	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.		\checkmark	\checkmark
3.MD.B. 4	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate unitswhole numbers, halves, or quarters.	\checkmark	\checkmark	
3.MD.C. 5		\checkmark		
3.MD.C.5a	A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.	\checkmark		
3.MD.C.5b	A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	\checkmark		
3.MD.C. 6	Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units).		\checkmark	
3.MD.C. 7	Relate area to the operations of multiplication and addition.	\checkmark		
3.MD.C.7a	Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.	\checkmark	\checkmark	
3.MD.C.7b	Multiply side lengths to find areas of rectangles with whole- number side lengths in the context of solving real-world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.	\checkmark	\checkmark	\checkmark
3.MD.C.7c	Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b $+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning.	\checkmark		
3.MD.D. 8	Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.		\checkmark	\checkmark
3.MD.E. 9	Solve word problems involving pennies, nickels, dimes, quarters, and bills greater than one dollar, using the dollar and cent symbols appropriately.			\checkmark

3.G.A. 1	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	\checkmark	\checkmark
3.G.A. 2	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.	\checkmark	\checkmark

