Grade 8 Guide to Rigor in Mathematics 2.0

In order to provide a quality mathematical education for students, instruction must be rigorous, focused, and coherent. This document provides explanations and a standards-based alignment to assist teachers in providing the first of those: a rigorous education. While this document will help teachers identify the explicit component(s) of rigor called for by each of the Louisiana Student Standards for Mathematics (LSSM), it is up to the teacher to ensure his/her instruction aligns to the expectations of the standards, allowing for the proper development of rigor in the classroom.

This rigor document is considered a "living" document as we believe that teachers and other educators will find ways to improve the document as they use it. Please send feedback to classroomsupporttoolbox@la.gov so that we may use your input when updating this guide.

Posted August 2, 2017

Table of Contents

Introduction
Definitions of the Components of Rigor 2
A Special Note on Procedural Skill and Fluency 2
Recognizing the Components of Rigor 3
Focus in the standards 3
Grade 8 LSSM Rigor Alignments 4

Definitions of the Components of Rigor

Rigorous teaching in mathematics does not simply mean increasing the difficulty or complexity of practice problems. Incorporating rigor into classroom instruction and student learning means exploring at a greater depth, the standards and ideas with which students are grappling. There are three components of rigor that will be expanded upon in this document, and each is equally important to student mastery: Conceptual Understanding, Procedural Skill and Fluency, and Application.

- Conceptual Understanding refers to understanding mathematical concepts, operations, and relations. It is more than knowing isolated facts and methods. Students should be able to make sense of why a mathematical idea is important and the kinds of contexts in which it is useful. It also allows students to connect prior knowledge to new ideas and concepts.
- Procedural Skill and Fluency is the ability to apply procedures accurately, efficiently, and flexibly. It requires speed and accuracy in calculation while giving students opportunities to practice basic skills. Students' ability to solve more complex application tasks is dependent on procedural skill and fluency.
- Application provides valuable context for learning and the opportunity to solve problems in a relevant and a meaningful way. It is through real-world application that students learn to select an efficient method to find a solution, determine whether the solution makes sense by reasoning, and develop critical thinking skills.

A Special Note on Procedural Skill and Fluency

While speed is definitely a component of fluency, it is not necessarily speed in producing an answer; rather, fluency can be observed by watching the speed with which a student engages with a particular problem. Furthermore, fluency does not require the most efficient strategy. The standards specify grade-level appropriate strategies or types of strategies with which students should demonstrate fluency (e.g., 1.OA.C. 6 allows for students to use counting on, making ten, creating equivalent but easier or known sums, etc.). It should also be noted that teachers should expect some procedures to take longer than others (e.g., fluency with the standard algorithm for division, 6.NS.B.2, as compared to fluently adding and subtracting within 10, 1.OA.C.6).

Standards identified as targeting procedural skill and fluency do not all have an expectation of automaticity and/or rote recall. Only two standards, 2.OA.B. 2 and 3.OA.C.7, have explicit expectations of students knowing facts from memory. Other standards targeting procedural skill and fluency do not require students to reach automaticity. For example, in 4.G.A.2, students do not need to reach automaticity in classifying two-dimensional figures.

Recognizing the Components of Rigor

In the LSSM each standard is aligned to one or more components of rigor, meaning that each standard aims to promote student growth in conceptual understanding, procedural skill and fluency, and/or application. Key words and phrases in the standards indicate which component(s) of rigor the standard is targeting: conceptual understanding standards often use terms like understand, recognize, or interpret; procedural skill and fluency standards tend to use words like fluently, find, or solve; and application standards typically use phrases like word problems or real-world problems. Key words and phrases are underlined in each standard to help clarify the identified component(s) of rigor for each standard.

Focus in the Standards

Not all content in a given grade is emphasized equally in the standards. Some clusters require greater emphasis than others based on the depth of the ideas, the time that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. More time in these areas is also necessary for students to meet the Louisiana Standards for Mathematical Practice. To say that some things have greater emphasis is not to say that anything in the standards can safely be neglected in instruction. Neglecting material will leave gaps in student skill and understanding and may leave students unprepared for the challenges of a later grade. Students should spend the large majority of their time on the major work of the grade (\square). Supporting work (\square) and, where appropriate, additional work (\square) can engage students in the major work of the grade.

$8^{\text {th }}$ Grade

LSSM - $8^{\text {th }}$ Grade		Explicit Component(s) of Rigor		
Code	Standard	Conceptual Understanding	Procedural Skill and Fluency	Application
8.NS.A. 1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually. Convert a decimal expansion which repeats eventually into a rational number by analyzing repeating patterns.	\checkmark	\checkmark	
8.NS.A. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations to the hundredths place.	\checkmark	\checkmark	
8.EE.A. 1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=1 / 27$.	\checkmark	\checkmark	
8.EE.A. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=$ p where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	\checkmark	\checkmark	
8.EE.A. 3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 10^{8} and the population of the world as 7 times 10^{9}, and determine that the world population is more than 20 times larger.	\checkmark	\checkmark	
8.EE.A. 4	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	\checkmark	\checkmark	
8.EE.B. 5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distancetime graph to a distance-time equation to determine which of two moving objects has greater speed.	\checkmark	\checkmark	\checkmark
8.EE.B. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.	\checkmark		
8.EE.C. 7	Solve linear equations in one variable.		\checkmark	

LSSM - $8^{\text {th }}$ Grade		Explicit Component(s) of Rigor		
Code	Standard	Conceptual Understanding	Procedural Skill and Fluency	Application
8.EE.C.7a	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).	\checkmark	\checkmark	
8.EE.C.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.		\checkmark	
8.EE.C. 8	Analyze and solve pairs of simultaneous linear equations.	\checkmark	\checkmark	
8.EE.C.8a	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	\checkmark		
8.EE.C.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .	\checkmark	\checkmark	
8.EE.C.8c	Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.		\checkmark	\checkmark
8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in this grade level.)	\checkmark		
8.F.A. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	\checkmark		\checkmark
8.F.A. 3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1, 1), (2, 4) and (3, 9), which are not on a straight line.	\checkmark	\checkmark	
8.F.B. 4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	\checkmark	\checkmark	
8.F.B. 5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	\checkmark		
8.G.A. 1	Verify experimentally the properties of rotations, reflections, and translations:	\checkmark		
8.G.A.1a	Lines are taken to lines, and line segments to line segments of the same length.	\checkmark		

	LSSM - $8^{\text {th }}$ Grade	Explicit Component(s) of Rigor		
Code	Standard	Conceptual Understanding	Procedural Skill and Fluency	Application
8.G.A.1b	Angles are taken to angles of the same measure.	\checkmark		
8.G.A.1c	Parallel lines are taken to parallel lines.	\checkmark		
8.G.A. 2	Explain that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. (Rotations are only about the origin and reflections are only over the y-axis and x-axis in Grade 8.)	\checkmark	\checkmark	
8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x-axis in Grade 8.)	\checkmark		
8.G.A. 4	Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x axis in Grade 8.)	\checkmark	\checkmark	
8.G.A. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	\checkmark		
8.G.B. 6	Explain a proof of the Pythagorean Theorem and its converse using the area of squares.	\checkmark		
8.G.B. 7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.		\checkmark	\checkmark
8.G.B. 8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.		\checkmark	
8.G.C. 9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	\checkmark	\checkmark	\checkmark
8.SP.A. 1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	\checkmark	\checkmark	
8.SP.A. 2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	\checkmark		

LSSM - $8^{\text {th }}$ Grade		Explicit Component(s) of Rigor		
Code	Standard	Conceptual Understanding	Procedural Skill and Fluency	Application
8.SP.A. 3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	\checkmark		\checkmark
8.SP.A. 4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	\checkmark	\checkmark	\checkmark

